Long lifespan lithium metal anodes enabled by Al2O3 sputter coating

Abstract Lithium metal is a Holy Grail anode for high energy density lithium ion batteries. While, its high chemical reactivity and high tendency to form dendrites hinder its wide applications. Here, in this study, we stabilize lithium metal by engineering an artificial SEI layer, namely fabricating a conformal nano-meter thickness amorphous Al2O3 thin film via magnetron sputtering technique on its surface. The obtained Al2O3 modified Li metals present robust chemical surface stability and effectively restrain the dendrite growth. 20 nm-thick Al2O3 film modified lithium metal in an all-solid-state battery Li/PEO-LiTFSI/Li ensures a cycle life of 660 h at a current density of 0.1 mA/cm2. Contradicting to a traditional belief of lithium plating at the current collector side via crossing the Al2O3 film, it directly plates on the Al2O3 film next to the separator side. Al2O3 film plays a crucial role as a “surfactant” in inducing a layer-by-layer film growth mode.

[1]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[2]  Y. Qi,et al.  Property Evolution of Al2O3 Coated and Uncoated Si Electrodes: A First Principles Investigation , 2014 .

[3]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[4]  Peng Gao,et al.  Li metal coated with amorphous Li 3 PO 4 via magnetron sputtering for stable and long-cycle life lithium metal batteries , 2017 .

[5]  Xinyi Dai,et al.  Improved electrochemical performance of LiCoO₂ electrodes with ZnO coating by radio frequency magnetron sputtering. , 2014, ACS applied materials & interfaces.

[6]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[7]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[8]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[9]  Qiang Zhang,et al.  Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite‐Free Lithium Metal Anode , 2017 .

[10]  C. Wolverton,et al.  Lithium Transport in Amorphous Al2O3 and AlF3 for Discovery of Battery Coatings , 2013 .

[11]  M. Armand,et al.  Challenges and Issues Facing Lithium Metal for Solid State Rechargeable Batteries , 2016 .

[12]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[13]  Malachi Noked,et al.  Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior , 2017 .

[14]  Ya‐Xia Yin,et al.  Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. , 2017, Journal of the American Chemical Society.

[15]  Jingze Li,et al.  Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery. , 2016, ACS applied materials & interfaces.

[16]  F. Ding,et al.  Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[17]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[18]  Jingyi Yang,et al.  Pretreatment of Lithium Surface by Using Iodic Acid (HIO3) To Improve Its Anode Performance in Lithium Batteries. , 2017, ACS applied materials & interfaces.

[19]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[20]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[21]  Feng Wang,et al.  Structure Tracking Aided Design and Synthesis of Li3V2(PO4)3 Nanocrystals as High-Power Cathodes for Lithium Ion Batteries , 2015 .

[22]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[23]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[24]  Hui Wu,et al.  High performance lithium metal anode: Progress and prospects , 2017 .

[25]  Liquan Chen,et al.  Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. , 2014, Faraday discussions.

[26]  S. Jung,et al.  How Do Li Atoms Pass through the Al2O3 Coating Layer during Lithiation in Li-ion Batteries? , 2013 .

[27]  Xinyi Dai,et al.  Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering , 2015 .

[28]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[29]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[30]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.

[31]  Li-Ming Wu,et al.  First-principles studies of lithium adsorption and diffusion on graphene with grain boundaries , 2014 .

[32]  Sihong Liu,et al.  Performance of “Polymer-in-Salt” Electrolyte PAN-LiTFSI Enhanced by Graphene Oxide Filler , 2016 .

[33]  Hong‐Jie Peng,et al.  Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes , 2018 .

[34]  J. Tersoff,et al.  Critical island size for layer-by-layer growth. , 1994, Physical review letters.

[35]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[36]  M. Titirici,et al.  Rice husk-derived carbon anodes for lithium ion batteries , 2013 .

[37]  Hong‐Jie Peng,et al.  Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries , 2017 .

[38]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[39]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[40]  Kevin N. Wood,et al.  Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments , 2015 .

[41]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[42]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[43]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[44]  Ying Bai,et al.  Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification , 2015 .

[45]  Jun Ma,et al.  Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries , 2014, Nature Communications.

[46]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[47]  Z. Wen,et al.  The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network , 2017 .

[48]  Qi Li,et al.  3D Porous Cu Current Collector/Li‐Metal Composite Anode for Stable Lithium‐Metal Batteries , 2017 .

[49]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[50]  Amit Misra,et al.  Smallest metallic nanorods using physical vapor deposition. , 2013, Physical review letters.

[51]  Wei Liu,et al.  Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes , 2017, ACS central science.