Using fuzzy automata to diagnose and predict heart problems

In this paper we introduce a formalism to specify the behavior of biological systems. Our formalism copes with uncertainty, via fuzzy logic constraints, an important characteristic of these systems. We present the formal syntax and semantics of our variant of fuzzy automata. The bulk of the paper is devoted to present an application of our formalism: a formal specification of the heart that can help to detect abnormal patterns of behavior. Specifically, our model analyzes the heartbeats per minute and the longitude of the RR waves of a patient. The model takes into account the age and gender of the patient, where age is considered to be a fuzzy parameter. Finally, we use real data to analyze the reliability of the model concerning the diagnosis and prediction of potential illnesses.

[1]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[2]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[3]  Dominique Méry,et al.  Formalization of Heart Models Based on the Conduction of Electrical Impulses and Cellular Automata , 2011, FHIES.

[4]  Franklin D. Johnston,et al.  The determination and the significance of the areas of the ventricular deflections of the electrocardiogram , 1934 .

[5]  Stefano Cagnoni,et al.  Genetic and Evolutionary Computation: Medical Applications , 2011 .

[6]  Bruno Legeard,et al.  Model-based Testing: Where Does It Stand? , 2014, ACM Queue.

[7]  Teruo Higashino,et al.  A survey on formal active and passive testing with applications to the cloud , 2015, Ann. des Télécommunications.

[8]  G. Bortolan,et al.  Comparison of four methods for premature ventricular contraction and normal beat clustering , 2005, Computers in Cardiology, 2005.

[9]  Leslie Lamport Who builds a house without drawing blueprints? , 2015, Commun. ACM.

[10]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[11]  Felix Zijlstra,et al.  Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction , 1997, The Lancet.

[12]  G. Bortolan,et al.  Ranking of pattern recognition parameters for premature ventricular contractions classification by neural networks , 2004, Physiological measurement.

[13]  Stefan C. Kremer,et al.  New directions in fuzzy automata , 2005, Int. J. Approx. Reason..

[14]  K Kasikumar,et al.  Applications of Data Mining Techniques in Healthcare and Prediction of Heart Attacks , 2018 .

[15]  Jørgen K. Kanters,et al.  Reference values of electrocardiogram repolarization variables in a healthy population. , 2010, Journal of electrocardiology.

[16]  Zhihao Jiang,et al.  Using the Virtual Heart Model to validate the mode-switch pacemaker operation , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[17]  K. Peeva Fuzzy automata and languages: theory and applications , 2004 .

[18]  Andrzej Wakanis,et al.  Fuzzy logic controller for rate-adaptive heart pacemaker , 2004, Appl. Soft Comput..

[19]  G. Dorn The Fuzzy Logic of Physiological Cardiac Hypertrophy , 2007, Hypertension.

[20]  Manuel Núñez,et al.  Self-adaptive fuzzy-timed systems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[21]  Mourad Oussalah,et al.  On the use of Hamacher's t-norms family for information aggregation , 2003, Inf. Sci..

[22]  A. Jervell,et al.  Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death , 1957 .

[23]  M. Packer Lack of relation between ventricular arrhythmias and sudden death in patients with chronic heart failure. , 1992, Circulation.

[24]  Z. Khachaturian,et al.  A methodological note: comparison between period and rate data in studies of cardiac function. , 1972, Psychophysiology.

[25]  Kyle W. Klarich,et al.  Premature Ventricular Contraction-Induced Cardiomyopathy: A Treatable Condition , 2012, Circulation. Arrhythmia and electrophysiology.

[26]  Luis Llana,et al.  Fuzzy-Timed Automata , 2010, FMOODS/FORTE.

[27]  Sumche Man,et al.  Normal values of the electrocardiogram for ages 16-90 years. , 2014, Journal of electrocardiology.

[28]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[29]  Taolue Chen,et al.  Quantitative verification of implantable cardiac pacemakers over hybrid heart models , 2014, Inf. Comput..

[30]  R. Wilson,et al.  Thrombolysis in Unstable Angina: Randomized Double‐Blind Trial of t‐PA and Placebo , 1992, Circulation.

[31]  King-Sun Fu,et al.  A Formulation of Fuzzy Automata and Its Application as a Model of Learning Systems , 1969, IEEE Trans. Syst. Sci. Cybern..

[32]  Peter J Hunter,et al.  Modeling total heart function. , 2003, Annual review of biomedical engineering.

[33]  I. Hozo,et al.  Estimating the mean and variance from the median, range, and the size of a sample , 2005, BMC medical research methodology.

[34]  Mercedes G. Merayo,et al.  Collective intelligence and databases in eHealth: A survey , 2017, J. Intell. Fuzzy Syst..

[35]  Christel Baier,et al.  Principles of model checking , 2008 .