Minimum Pearson Distance Detection Using Mass-Centered Codewords in the Presence of Unknown Varying Offset

We consider the transmission and storage of data that use coded binary symbols over a channel, where a Pearson distance-based detector is used for achieving resilience against additive noise, unknown channel gain, and varying offset. We study minimum Pearson distance (MPD) detection in conjunction with a set, S, of codewords satisfying a center-of-mass constraint. We investigate the properties of the codewords in S, compute the size of S, and derive its redundancy for asymptotically large values of the codeword length n. The redundancy of S is approximately (3/2) log2 n + α, where α = log2(π/24)1/2 = -1.467.. for n odd and α = -0.467.. for n even. We describe a simple encoding algorithm whose redundancy equals 2 log2 n+ o(logn). We also compute the word error rate of the MPD detector when the channel is corrupted with additive Gaussian noise.

[1]  Bella Bose,et al.  On efficient high-order spectral-null codes , 1999, IEEE Trans. Inf. Theory.

[2]  Kees A. Schouhamer Immink,et al.  Minimum pearson distance detection in the presence of unknown slowly varying offset , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[3]  Kees A. Schouhamer Immink A survey of codes for optical disk recording , 2001, IEEE J. Sel. Areas Commun..

[4]  Thomas Parnell,et al.  Phase Change Memory Reliability: A Signal Processing and Coding Perspective , 2015, IEEE Transactions on Magnetics.

[5]  Helmut Prodinger On the Number of Partitions of { 1, …, n} into Two Sets of Equal Cardinalities and Equal Sums , 1982, Canadian Mathematical Bulletin.

[6]  Jos H. Weber,et al.  Minimum Pearson Distance Detection for Multilevel Channels With Gain and/or Offset Mismatch , 2014, IEEE Transactions on Information Theory.

[7]  Jos H. Weber,et al.  Hybrid Minimum Pearson and Euclidean Distance Detection , 2015, IEEE Transactions on Communications.

[8]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[9]  Jos H. Weber,et al.  Pearson Codes , 2015, IEEE Transactions on Information Theory.

[10]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[11]  Paul H. Siegel,et al.  High-order spectral-null codes - Construction and bounds , 1994, IEEE Trans. Inf. Theory.

[12]  A. Vardy,et al.  High-order spectral-null codes: constructions and bounds , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[13]  Jos H. Weber,et al.  Knuth's Balanced Codes Revisited , 2010, IEEE Transactions on Information Theory.

[14]  Ching-Nung Yang,et al.  Efficient Encoding/Decoding for Second-Order Spectral-Null Codes by Reducing Random Walks , 2011, IEEE Transactions on Computers.

[15]  Ching-Nung Yang Efficient Encoding Algorithm for Second-Order Spectral-Null Codes Using Cyclic Bit Shift , 2008, IEEE Transactions on Computers.

[16]  Donald E. Knuth,et al.  Efficient balanced codes , 1986, IEEE Trans. Inf. Theory.

[17]  Ivan J. Fair,et al.  Algorithms to enumerate codewords for DC2-constrained channels , 2001, IEEE Trans. Inf. Theory.