Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe–Metis/Solar Orbiter Observations

The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R ⊙ above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local properties of the two streams are different. Specifically, the solar wind emanating from the stronger magnetic field region has a lower bulk flux density, as expected, and is in a state of well-developed Alfvénic turbulence, with low intermittency. This is interpreted in terms of slab turbulence in the context of nearly incompressible magnetohydrodynamics. Conversely, the highly intermittent and poorly developed turbulent behavior of the solar wind from the weaker magnetic field region is presumably due to large magnetic deflections most likely attributed to the presence of switchbacks of interchange reconnection origin.

[1]  G. Zank,et al.  The Turbulent Properties of the Sub-Alfvénic Solar Wind Measured by the Parker Solar Probe , 2022, The Astrophysical Journal Letters.

[2]  A. Rahmati,et al.  Turbulence in the Sub-Alfvénic Solar Wind , 2022, The Astrophysical Journal Letters.

[3]  G. Zank,et al.  Inertial-range Magnetic-fluctuation Anisotropy Observed from Parker Solar Probe’s First Seven Orbits , 2021, The Astrophysical Journal Letters.

[4]  L. Sorriso-Valvo,et al.  Impact of Switchbacks on Turbulent Cascade and Energy Transfer Rate in the Inner Heliosphere , 2021, The Astrophysical Journal Letters.

[5]  L. Sorriso-Valvo,et al.  Turbulent Cascade and Energy Transfer Rate in a Solar Coronal Mass Ejection , 2021, The Astrophysical Journal Letters.

[6]  F. Frassetto,et al.  Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature , 2021, The Astrophysical Journal Letters.

[7]  N. Raouafi,et al.  BepiColombo’s Cruise Phase: Unique Opportunity for Synergistic Observations , 2021, Frontiers in Astronomy and Space Sciences.

[8]  G. Zank,et al.  Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe , 2021, Physics of Plasmas.

[9]  T. Horbury,et al.  Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment , 2021, The Astrophysical Journal Letters.

[10]  M. Velli,et al.  Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe , 2021, Astronomy & Astrophysics.

[11]  F. Reale,et al.  Reconstruction of the Parker spiral with the Reverse In situ data and MHD APproach – RIMAP , 2020, Journal of Space Weather and Space Climate.

[12]  T. Horbury,et al.  Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona , 2020, Astronomy & Astrophysics.

[13]  G. Zank,et al.  The Origin of Switchbacks in the Solar Corona: Linear Theory , 2020, The Astrophysical Journal.

[14]  C. Russell,et al.  Observation of an inertial-range energy cascade within a reconnection jet in the Earth’s magnetotail , 2020, 2010.01782.

[15]  C. Mariano,et al.  The Solar Orbiter Heliospheric Imager (SoloHI) , 2020, Astronomy & Astrophysics.

[16]  N. Raouafi,et al.  Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories , 2020, Astronomy & Astrophysics.

[17]  G. Zank,et al.  Spectral Anisotropy in 2D plus Slab Magnetohydrodynamic Turbulence in the Solar Wind and Upper Corona , 2020, The Astrophysical Journal.

[18]  F. Carbone,et al.  Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations , 2020, The Astrophysical Journal.

[19]  L. Fisk,et al.  Global Circulation of the Open Magnetic Flux of the Sun , 2020, The Astrophysical Journal.

[20]  P. MacNeice,et al.  Forecasting the Ambient Solar Wind with Numerical Models. II. An Adaptive Prediction System for Specifying Solar Wind Speed near the Sun , 2020, The Astrophysical Journal.

[21]  R. Livi,et al.  Exploring Solar Wind Origins and Connecting Plasma Flows from the Parker Solar Probe to 1 au: Nonspherical Source Surface and Alfvénic Fluctuations , 2020, The Astrophysical Journal Supplement Series.

[22]  R. Livi,et al.  Cross Helicity Reversals in Magnetic Switchbacks , 2019, The Astrophysical Journal Supplement Series.

[23]  W. Matthaeus,et al.  Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade , 2019, The Astrophysical Journal Supplement Series.

[24]  Michael T. McManus,et al.  The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere , 2019, The Astrophysical Journal Supplement Series.

[25]  Philippe Louarn,et al.  Models and data analysis tools for the Solar Orbiter mission , 2019, Astronomy & Astrophysics.

[26]  Giampiero Naletto,et al.  Metis: the Solar Orbiter visible light and ultraviolet coronal imager , 2019, Astronomy & Astrophysics.

[27]  F. Carbone,et al.  No Evidence for Critical Balance in Field-aligned Alfvénic Solar Wind Turbulence , 2019, The Astrophysical Journal.

[28]  D. Stansby,et al.  Highly structured slow solar wind emerging from an equatorial coronal hole , 2019, Nature.

[29]  N. Andrés,et al.  On Exact Laws in Incompressible Hall Magnetohydrodynamic Turbulence , 2019, The Astrophysical Journal.

[30]  P. MacNeice,et al.  Forecasting the Ambient Solar Wind with Numerical Models. I. On the Implementation of an Operational Framework , 2019, The Astrophysical Journal Supplement Series.

[31]  T. Horbury,et al.  Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  S. Poedts,et al.  EUHFORIA: European heliospheric forecasting information asset , 2018 .

[33]  L. Franci,et al.  von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations , 2018, 1803.09572.

[34]  T. Horbury,et al.  Probabilistic Solar Wind and Geomagnetic Forecasting Using an Analogue Ensemble or “Similar Day” Approach , 2017, Solar physics.

[35]  G. Zank,et al.  Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence , 2017, The Astrophysical Journal.

[36]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[37]  D. Werthimer,et al.  The FIELDS Instrument Suite for Solar Probe Plus , 2016, Space Science Reviews.

[38]  John W. Belcher,et al.  Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus , 2015 .

[39]  L. Driel-Gesztelyi,et al.  How Can Active Region Plasma Escape into the Solar Wind from Below a Closed Helmet Streamer? , 2014, 1409.7369.

[40]  J. C. del Toro Iniesta,et al.  The Solar Orbiter mission , 2020, Optics & Photonics - Optical Engineering + Applications.

[41]  I. Furno,et al.  Methods for Characterising Microphysical Processes in Plasmas , 2013, 1306.5303.

[42]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[43]  P. Colella,et al.  THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS , 2011, 1110.0740.

[44]  P. Riley,et al.  Mapping Solar Wind Streams from the Sun to 1 AU: A Comparison of Techniques , 2011 .

[45]  Johannes Benkhoff,et al.  BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals , 2010 .

[46]  S. Boldyrev,et al.  Strong magnetohydrodynamic turbulence with cross helicity , 2009, 1004.3798.

[47]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[48]  B. Chandran Strong Anisotropic MHD Turbulence with Cross Helicity , 2008, 0801.4903.

[49]  L. Sorriso-Valvo,et al.  Small-Scale Energy Cascade of the Solar Wind Turbulence , 2007, 0710.0763.

[50]  S. Giordano,et al.  Coronal Rotation at Solar Minimum from UV Observations , 2008 .

[51]  A. Lazarian,et al.  Strong Imbalanced Turbulence , 2007, 0709.0554.

[52]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[53]  P. Goldreich,et al.  Imbalanced Strong MHD Turbulence , 2006, astro-ph/0607243.

[54]  N. Gopalswamy,et al.  Solar Sources of Impulsive Solar Energetic Particle Events and Their Magnetic Field Connection to the Earth , 2006 .

[55]  Vincenzo Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[56]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[57]  Y.-M. Wang,et al.  Empirical Relationship between the Magnetic Field and the Mass and Energy Flux in the Source Regions of the Solar Wind , 1995 .

[58]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[59]  N. Sheeley,et al.  Solar wind speed and coronal flux-tube expansion , 1990 .

[60]  G. Noci,et al.  Solar wind diagnostics from Doppler-enhanced scattering , 1987 .

[61]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[62]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[63]  G. Taylor The Spectrum of Turbulence , 1938 .