Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles.

The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of membrane coverage, membrane sidedness upon coating, and the effects of polymeric particles' surface charge and surface curvature on the membrane cloaking process. The study shows that RBC membranes completely cover negatively charged polymeric nanoparticles in a right-side-out manner and enhance the particles' colloidal stability. The membrane cloaking process is applicable to particle substrates with a diameter ranging from 65 to 340 nm. Additionally, the study reveals that both surface glycans on RBC membranes and the substrate properties play a significant role in driving and directing the membrane-particle assembly. These findings further the understanding of the dynamics between cellular membranes and nanoscale substrates and provide valuable information toward future development and characterization of cellular membrane-cloaked nanodevices.

[1]  Ronnie H. Fang,et al.  Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. , 2014, Nanoscale.

[2]  Ronnie H. Fang,et al.  Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. , 2013, Nanoscale.

[3]  Ronnie H. Fang,et al.  Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. , 2013, Nanomedicine.

[4]  Ronnie H. Fang,et al.  Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes , 2013, Advanced materials.

[5]  Ronnie H. Fang,et al.  A biomimetic nanosponge that absorbs pore-forming toxins , 2013, Nature nanotechnology.

[6]  Ronnie H. Fang,et al.  'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. , 2013, Nanoscale.

[7]  Dennis E Discher,et al.  Minimal " Self " Peptides That Inhibit Phagocytic Clearance and Enhance Delivery of Nanoparticles References and Notes , 2022 .

[8]  Liangfang Zhang,et al.  Erythrocyte‐Inspired Delivery Systems , 2012, Advanced healthcare materials.

[9]  S. Little,et al.  Biomimetic Delivery with Micro‐ and Nanoparticles , 2012, Advanced materials.

[10]  Molly M. Stevens,et al.  Exploring and exploiting chemistry at the cell surface. , 2011, Nature chemistry.

[11]  D. Irvine,et al.  Bio-inspired, bioengineered and biomimetic drug delivery carriers , 2011, Nature Reviews Drug Discovery.

[12]  Joseph M. DeSimone,et al.  Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles , 2011, Proceedings of the National Academy of Sciences.

[13]  Dennis E Discher,et al.  Self inhibition of phagocytosis: the affinity of 'marker of self' CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. , 2010, Blood cells, molecules & diseases.

[14]  Samir Mitragotri,et al.  Red blood cell-mimicking synthetic biomaterial particles , 2009, Proceedings of the National Academy of Sciences.

[15]  Roland Schauer,et al.  Sialic acids as regulators of molecular and cellular interactions , 2009, Current Opinion in Structural Biology.

[16]  Robert Langer,et al.  PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. , 2009, Biomaterials.

[17]  Martin Fischlechner,et al.  Lipid layers on polyelectrolyte multilayer supports , 2008 .

[18]  R. Misra,et al.  Biomaterials , 2008 .

[19]  M. Ornatska,et al.  Interaction of nanoparticles with lipid membrane. , 2008, Nano letters.

[20]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[21]  É. Duguet,et al.  The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. , 2005, Nano letters.

[22]  Ruxandra Gref,et al.  Polysaccharide-decorated nanoparticles. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[23]  Jie Fu,et al.  Completely "green" synthesis and stabilization of metal nanoparticles. , 2003, Journal of the American Chemical Society.

[24]  S. Kelm,et al.  Sialic Acids in Molecular and Cellular Interactions , 1997, International Review of Cytology.

[25]  J. U. Park,et al.  Simple preparation of nanoparticles coated with carbohydrate-carrying polymers. , 1997, Biomaterials.

[26]  J. Delaunay,et al.  Red Cell Membrane , 1995 .

[27]  P. Sperryn,et al.  Blood. , 1989, British journal of sports medicine.

[28]  R. Schauer Chemistry, metabolism, and biological functions of sialic acids. , 1982, Advances in carbohydrate chemistry and biochemistry.

[29]  M. Conrad,et al.  Role of sialic acid in erythrocyte survival , 1975 .

[30]  T. Steck,et al.  Topographical distribution of complex carbohydrates in the erythrocyte membrane. , 1974, The Journal of biological chemistry.

[31]  H. Heidrich,et al.  Two types of vesicles from the erythrocyte-ghost membrane differing in surface charge. Separation and characterization by preparative free-flow electrophoresis. , 1974, European journal of biochemistry.

[32]  M. Cohen,et al.  Membranes of animal cells. 8. Distribution of sialic acid, hexosamines and sialidase in the L cell. , 1971, Biochimica et biophysica acta.

[33]  E. P. Kennedy,et al.  Membrane Structure and Function , 1966, The Journal of general physiology.

[34]  Aaron W. Miller,et al.  Sialic Acid Content of the Erythrocyte and of an Ascites Tumor Cell of the Mouse , 1963 .

[35]  J. Oncley,et al.  The contribution of sialic acid to the surface charge of the erythrocyte. , 1962, The Journal of biological chemistry.