Operational Advanced Air Pollution Modeling

Abstract — Operational models that use solutions of the advection-diffusion equation based on more realistic assumptions than that of homogeneous wind and eddy diffusivity coefficients are presented. In particular a new parameterization for a model using a solution that accepts wind and eddy diffusivity profiles described by power functions of height is introduced. The performance of the model with the new parameterization was assessed using experimental data sets.

[1]  O. F. T. Roberts The theoretical scattering of smoke in a turbulent atmosphere , 1923 .

[2]  Albert A. M. Holtslag,et al.  Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications , 1985 .

[3]  J. Weil,et al.  Updating Applied Diffusion Models , 1985 .

[4]  W. Rounds Solutions of the two-dimensional diffusion equations , 1955 .

[5]  John S. Irwin,et al.  A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability , 1979 .

[6]  T. Tirabassi,et al.  EVALUATION OF SIMILARITY SCALES IN THE STRATIFIED SURFACE LAYER USING WIND SPEED AND TEMPERATURE GRADIENT , 1986 .

[7]  F. Nieuwstadt,et al.  An analytic solution of the one-dimensional diffusion equation in a non-stationary boundary layer with an application to inversion rise fumigation , 1981 .

[8]  R. A. Scriven,et al.  The long range transport of airborne material and its removal by depostion and washout - II. The effect of turbulent diffusion. , 1975, Atmospheric environment.

[9]  H. R. Olesen,et al.  The Danish Gaussian Air Pollution Model (Oml): Description, Test and Sensitivity Analysis in View of Regulatory Applications , 1986 .

[10]  Gour-Tsyh Yeh,et al.  Three-dimensional air pollutant modeling in the lower atmosphere , 1975 .

[11]  Albert A. M. Holtslag,et al.  A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data , 1983 .

[12]  T. Tirabassi,et al.  Analytical air pollution advection and diffusion models , 1989 .

[13]  A. Holtslag,et al.  A software library for the calculation of surface fluxes over land and sea , 1990 .

[14]  Tiziano Tirabassi,et al.  KAPPA-G, a non-Gaussian plume dispersion model: description and evaluation against tracer measurements , 1986 .

[15]  T. Tirabassi,et al.  Validation of a New Turbulent Parameterization for Dispersion Models in Convective Conditions , 1997 .

[16]  Julius Chang,et al.  A non-local closure model for vertical mixing in the convective boundary layer , 1992 .

[17]  L. L. Schulman,et al.  Hazard Response Modeling Uncertainty (A Quantitative Method) , 1988 .

[18]  Alan Robins,et al.  UK Atmospheric Dispersion Modelling System , 1992 .

[19]  J. Kretzschmar,et al.  Influence of the turbulence typing scheme upon the cumulative frequency distributions of the calculated relative concentrations for different averaging times , 1984 .

[20]  L. Hildemann,et al.  A generalized mathematical scheme to analytically solve the atmospheric diffusion equation with dry deposition , 1997 .

[21]  Erik Lyck,et al.  Atmospheric Dispersion from Elevated Sources in an Urban Area: Comparison between Tracer Experiments and Model Calculations , 1984 .

[22]  B. Fisher The long range transport of sulphur dioxide , 1975 .

[23]  Steven R. Hanna,et al.  Hybrid Plume Dispersion Model (HPDM) Development and Evaluation , 1989 .

[24]  An analytic solution of the time-dependent, one-dimensional diffusion equation in the atmospheric boundary layer , 1980 .

[25]  F. B. Smith The diffusion of smoke from a continuous elevated point-source into a turbulent atmosphere , 1957, Journal of Fluid Mechanics.

[26]  A. V. Ulden,et al.  Simple estimates for vertical diffusion from sources near the ground , 1978 .

[27]  John S. Irwin,et al.  Applied dispersion modelling based on meteorological scaling parameters , 1987 .