An optically-pumped, integrated distributed feedback laser is demonstrated using a CMOS compatible process, where a record-low-temperature deposited gain medium enables integration with active devices such as modulators and detectors. A pump threshold of 24.9 mW and a slope efficiency of 1.3 % is demonstrated at the lasing wavelength of 1552.98 nm. The rare-earth-doped aluminum oxide, used as the gain medium in this laser, is deposited by a substrate-bias-assisted reactive sputtering process. This process yields optical quality films with 0.1 dB/cm background loss at the deposition temperature of 250 ◦C, and therefore is fully compatible as a back-end-of-line CMOS process. The aforementioned laser’s performance is comparable to previous lasers having gain media fabricated at much higher temperatures (> 550 ◦C). This work marks a crucial step towards monolithic integration of amplifiers and lasers in silicon microphotonic systems. c © 2017 Optical Society of America OCIS codes: (130.3120) Integrated optics devices; (140.3500) Lasers, erbium; (310.1860) Deposition and fabrication; (140.3490) Lasers, distributed-feedback. References and links 1. T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991). 2. A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000). 3. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic, 1998). 4. Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997). 5. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997). 6. Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998). 7. J. D. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011). 8. R. Soulard, A. Zinoviev, J. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pumpinduced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010). 9. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014). Vol. 25, No. 15 | 24 Jul 2017 | OPTICS EXPRESS 18058 #291876 https://doi.org/10.1364/OE.25.018058 Journal © 2017 Received 3 Apr 2017; revised 11 Jul 2017; accepted 12 Jul 2017; published 19 Jul 2017 10. M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium-doped DBR laser on an ultra-low-Loss Si3N4 platform,” in “OFC Technical Digest”, (Optical Society of America, 2015), Tu2C.7. 11. N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017). 12. E. Bernhardi, H. Van Wolferen, L. Agazzi, M. Khan, C. Roeloffzen, K. Wörhoff, M. Pollnau, and R. De Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er on silicon,” Opt. Lett. 35, 2394–2396 (2010). 13. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Opt. Express 16, 14173–14179 (2008). 14. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017). 15. M Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38, 4825–4828 (2013). 16. J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012). 17. N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016). 18. Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001). 19. N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017). 20. J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er optical amplifiers on silicon,” J. Opt. Soc. Am. B 27, 187–196 (2010). 21. E. S. Hosseini, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014). 22. C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5. 23. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017). 24. K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009). 25. A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99. Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637. 26. H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005). 27. S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001). 28. H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003). 29. E. S. Magden, “Rare-earth doped aluminum oxide lasers for silicon photonics,” Thesis, Massachusetts Institute of Technology (2014). 30. E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999). 31. G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005). 32. S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010). 33. E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006). 34. G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016). Vol. 25, No. 15 | 24 Jul 2017 | OPTICS EXPRESS 18059
[1]
Kang Zhang,et al.
C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser.
,
2008,
Optics express.
[2]
Jie Sun,et al.
CMOS-compatible 75 mW erbium-doped distributed feedback laser.
,
2014,
Optics letters.
[3]
R. Howe,et al.
Post-CMOS integration of germanium microstructures
,
1999,
Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).
[4]
Edward H. Bernhardi,et al.
Erbium-doped spiral amplifiers with 20 dB of net gain on silicon.
,
2014,
Optics express.
[5]
P. Shum,et al.
Photonic Generation of Frequency-Tunable Microwave Signals Using an Array of Uniformly Spaced Optical Combs
,
2012,
Journal of Lightwave Technology.
[6]
M. Watts,et al.
Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities.
,
2016,
Optics letters.
[7]
Michael L Davenport,et al.
Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform.
,
2013,
Optics letters.
[8]
O Antipov,et al.
Detailed characterization of pump-induced refractive index changes observed in Nd:YVO(4), Nd:GdVO(4) and Nd:KGW.
,
2010,
Optics express.
[9]
M. Pollnau,et al.
Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon.
,
2010,
Optics letters.
[10]
Albert Polman,et al.
Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm
,
1997
.
[11]
A. Aydınlı,et al.
Influence of substrate temperature and bias voltage on the optical transmittance of TiN films
,
2003
.
[12]
M. Watts,et al.
High-power thulium lasers on a silicon photonics platform.
,
2017,
Optics letters.
[13]
J. Feinberg,et al.
40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG
,
2001,
IEEE Photonics Technology Letters.
[14]
Jie Sun,et al.
Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform.
,
2017,
Optics express.
[15]
Michael R. Watts,et al.
Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform
,
2015,
2015 Conference on Lasers and Electro-Optics (CLEO).
[16]
Purnawirman,et al.
Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform.
,
2017,
Optics letters.
[17]
E. Magden.
Rare-Earth Doped Aluminum Oxide Lasers for Silicon Photonics
,
2014
.
[18]
S. Tero-Kubota,et al.
Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol–gel method
,
1998
.
[19]
C. Ramana,et al.
Tungsten oxide (WO3) thin films for application in advanced energy systems
,
2010
.
[20]
H. Bender,et al.
Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers
,
2001
.
[21]
Zhan Su,et al.
Athermal synchronization of laser source with WDM filter in a silicon photonics platform
,
2017,
Applied physics letters.
[22]
Tsu-Jae King,et al.
Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices
,
2005,
IEEE Transactions on Electron Devices.
[23]
Markus Pollnau,et al.
Erbium‐doped integrated waveguide amplifiers and lasers
,
2011
.
[24]
E. Fortunato,et al.
High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature
,
2006
.
[25]
Michael R. Watts,et al.
C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity
,
2016,
2016 Conference on Lasers and Electro-Optics (CLEO).
[26]
M. Jacquet,et al.
Structural and optical properties of sputtered ZnO films
,
1999
.
[27]
Morio Kobayashi,et al.
Guided-wave laser based on erbium-doped silica planar lightwave circuit
,
1991
.
[28]
Dimitri Geskus,et al.
Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon
,
2010
.
[29]
E. Andrade,et al.
Characterization of amorphous aluminum oxide films prepared by the pyrosol process
,
2000
.
[30]
Tsuneo Mitsuyu,et al.
Photowritten optical waveguides in various glasses with ultrashort pulse laser
,
1997
.
[31]
J. McKittrick,et al.
Luminescence study in Eu-doped aluminum oxide phosphors
,
2005
.