ALS-FUS pathology revisited: singleton FUS mutations and an unusual case with both a FUS and TARDBP mutation

[1]  Chundi Vinay Kumar,et al.  Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6 , 2015, Journal of biomolecular structure & dynamics.

[2]  D. Ito,et al.  Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. , 2015, Human molecular genetics.

[3]  M. Strong,et al.  Cytoplasmic sequestration of FUS/TLS associated with ALS alters histone marks through loss of nuclear protein arginine methyltransferase 1. , 2015, Human molecular genetics.

[4]  T. Mizutani,et al.  A Japanese patient with familial ALS and a p.K510M mutation in the gene for FUS (FUS) resulting in the totally locked‐in state , 2014, Neuropathology : official journal of the Japanese Society of Neuropathology.

[5]  G. Sobue,et al.  Differential motor neuron involvement in progressive muscular atrophy: a comparative study with amyotrophic lateral sclerosis , 2014, BMJ Open.

[6]  H. Kawakami,et al.  Neuropathological features of Japanese familial amyotrophic lateral sclerosis with p.N352S mutation in TARDBP , 2014, Neuropathology and applied neurobiology.

[7]  L. Petrucelli,et al.  Mechanisms of toxicity in C9FTLD/ALS , 2014, Acta Neuropathologica.

[8]  B. Boeve,et al.  Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS , 2013, Neurobiology of Aging.

[9]  T. Hortobágyi,et al.  Transportin 1 colocalization with Fused in Sarcoma (FUS) inclusions is not characteristic for amyotrophic lateral sclerosis‐FUS confirming disrupted nuclear import of mutant FUS and distinguishing it from frontotemporal lobar degeneration with FUS inclusions , 2013, Neuropathology and applied neurobiology.

[10]  M. Pennuto,et al.  Protein Arginine Methyltransferase 1 and 8 Interact with FUS to Modify Its Sub-Cellular Distribution and Toxicity In Vitro and In Vivo , 2013, PloS one.

[11]  Rebecca B. Smith,et al.  RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. , 2013, Human molecular genetics.

[12]  T. Hortobágyi,et al.  ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules , 2013, Human molecular genetics.

[13]  P. Andersen,et al.  Truncating mutations in FUS/TLS give rise to a more aggressive ALS‐phenotype than missense mutations: a clinico‐genetic study in Germany , 2013, European journal of neurology.

[14]  V. Meininger,et al.  Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology , 2013, Acta Neuropathologica.

[15]  E. Kremmer,et al.  Arginine methylation next to the PY‐NLS modulates Transportin binding and nuclear import of FUS , 2012, The EMBO journal.

[16]  T. Hortobágyi,et al.  Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion , 2012, Acta Neuropathologica.

[17]  H. Kretzschmar,et al.  Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations , 2012, Acta Neuropathologica.

[18]  D. Price,et al.  Rodent models of TDP-43: Recent advances , 2012, Brain Research.

[19]  Lien-Szu Wu,et al.  Targeted Depletion of TDP-43 Expression in the Spinal Cord Motor Neurons Leads to the Development of Amyotrophic Lateral Sclerosis-like Phenotypes in Mice* , 2012, Journal of Biological Chemistry.

[20]  Michelle K. Lupton,et al.  The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder , 2012, European Journal of Human Genetics.

[21]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[22]  L. Petrucelli,et al.  Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice , 2011, Molecular Neurodegeneration.

[23]  M. Rossor,et al.  Transportin1: a marker of FTLD-FUS , 2011, Acta Neuropathologica.

[24]  A. Eisen,et al.  Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation , 2011, Acta Neuropathologica.

[25]  L. Hazrati,et al.  A novel double mutation in FUS gene causing sporadic ALS , 2011, Neurobiology of Aging.

[26]  J. Gámez,et al.  FUS/TLS gene mutations are the second most frequent cause of familial ALS in the Spanish population , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[27]  W. Engel,et al.  Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia , 2010, Neurology.

[28]  J. Lowe,et al.  Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations , 2010, Neurology.

[29]  A. Eisen,et al.  Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis , 2010, Muscle & nerve.

[30]  J. Highley,et al.  Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. , 2010, Archives of neurology.

[31]  T. Iwaki,et al.  Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation , 2010, Acta Neuropathologica.

[32]  G. Comi,et al.  Mutations of FUS gene in sporadic amyotrophic lateral sclerosis , 2009, Journal of Medical Genetics.

[33]  J. Landers,et al.  Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort , 2009, Neurology.

[34]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[35]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[36]  V. Meininger,et al.  Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis , 2008, Journal of Medical Genetics.

[37]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[38]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.