Synthesis and coordinating ability of chitosan dithiocarbamate and analogs towards Cu(II) ions

Potassium chitosan dithiocarbamate (ChitDTC) was synthesized and characterized by elemental analysis and solid-state C-13 NMR spectroscopy. The degree of substitution (DS) (number of substituents per 100 2-amino-2-deoxyglucopyranoside units) and molalities of the groups were calculated for acetylamino, amino and dithiocarbamate substituents in chitin, chitosan and ChitDTC. A comparative study of the retention and exchange of Cu(II) was performed with chitin, chitosan and ChitDTC at 30degreesC, pH 6.0 (0.1 M succinate). The stability constants, K-X, for the heterogenous equilibriumChitX + Cu(II) reversible arrow(KX) ChitXCu(II)were calculated assuming that complexing of Cu(II) ions was largely in a 1:1 ratio with respect to each group. The values of K-X for each group were NHAc 45.1, DTC 3.14 x 10(3), and NH2 1.12 x 10(4). It is proposed that in the presence of succinate, the main species of aqua Cu(II) ion present in solution must be the uncharged Cu(II)-succinate complex that prevents the acetylamino, amino and DTC groups from forming complexes higher than 1: 1. Also, this may explain the fact that the stability constant for DTC was lower than for the amino group. The method allows the characterization of the chelating ability of each group in ChitDTC with respect to metal ions. Copyright (C) 2002 John Wiley Sons, Ltd.

[1]  C. Bernal,et al.  Differences in thermal decomposition of Ag(I), Mn(II), Fe(II) and Fe(III) complexes of cyclic dithiocarbamates , 2001 .

[2]  R. Car,et al.  First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. , 2001, Science.

[3]  M. N. R. Kumar A review of chitin and chitosan applications , 2000 .

[4]  E. Humeres,et al.  Mechanisms of Acid Decomposition of Dithiocarbamates. 1. Alkyl Dithiocarbamates , 1998 .

[5]  N. Kaushik,et al.  Thermal studies on germanium(IV) complexes of N-alkylcyclohexyl dithiocarbamates , 1996 .

[6]  J. Sharma,et al.  Synthesis and spectral studies of diorganotin heterocyclic dithiocarbamate complexes: The crystal structure of (CH3)2Sn[(S2CH2]2 , 1996 .

[7]  M. Zhang,et al.  ^ C CP/MAS NMR Spectral Analysis of 6-O-Tosyl, 6-Deoxy-6-iodo, and 6-Deoxy Derivatives of N-Acetylchitosan in a Solid State , 1994 .

[8]  E. Humeres,et al.  Water-Catalysed hydrolysis of p-nitrobenzyl cellulose xanthate , 1994 .

[9]  R. D. Bereman,et al.  The synthesis and coordination chemistry of a new dithiocarbamate prepared from dipyridylaminedithiocarbamate , 1988 .

[10]  Y. Baba,et al.  Selectivity Series in the Adsorption of Metal Ions on a Resin Prepared by Crosslinking Copper(II)-Complexed Chitosan , 1988 .

[11]  L. Tassi,et al.  Preparation, properties and reactivity of gold complexes with some heterocyclic dithiocarbamates as ligands , 1988 .

[12]  A. Domard pH and c.d. measurements on a fully deacetylated chitosan: application to CuII—polymer interactions , 1987 .

[13]  D. Miller,et al.  Synthesis and application of 13C enriched phenylisothiocyanate as a 13C NMR protein probe. , 1987, Biochemical and biophysical research communications.

[14]  M. Kaniwa High-performance liquid chromatographic identification and determination of dithiocarbamates in vulcanized rubber products. , 1987, Journal of chromatography.

[15]  R. Aggarwal,et al.  Spectroscopic studies of heteroligand complexes containing oxygen, nitrogen and sulphur donor atoms , 1986 .

[16]  P. Rollin One-step stereospecific conversion of alcohols into dithiocarbamates: A smooth pathway for the introduction of a sulphur functionality , 1986 .

[17]  L. Tassi,et al.  Coordinating ability of methylpiperidine dithiocarbamates towards platinum group metals , 1985 .

[18]  M. Sano,et al.  Structural study of copper(II) sulfate solution in highly concentrated aqueous ammonia by x-ray absorption spectra , 1984 .

[19]  G. Tosi,et al.  The syntheses and properties of cobalt(II), nickel(II) and copper(II) complexes with some heterocyclic dithiocarbamates , 1984 .

[20]  K. Ogawa,et al.  X-RAY DIFFRACTION STUDY ON CHITOSAN-METAL COMPLEXES , 1984 .

[21]  A. Doadrio,et al.  Tungsten(V) dimeric complexes with heterocyclic dithiocarbamates , 1984 .

[22]  N. Yordanov,et al.  Studies on the intermolecular interactions of metal chelate complexesIX: On the interaction of copper(II) dithiocarbamate with some lewis acids , 1984 .

[23]  F. Tanfani,et al.  Preparation and characteristic properties of dithiocarbamate chitosan, a chelating polymer , 1982 .

[24]  F. Tanfani,et al.  N-(o-carboxybenzyl) chitosan, N-carboxymethyl chitosan and dithiocarbamate chitosan: new chelating derivatives of chitosan , 1982 .

[25]  G. Arena,et al.  Thermodynamic and spectroscopic properties of mixed complexes in aqueous solution. Copper(II) complexes of 2,2′-bipyridyl and dicarboxylic acids , 1978 .

[26]  R. A. Ludwig,et al.  The Dithiocarbamates and Related Compounds , 1962 .

[27]  G. Eckert Ein Beitrag zur Anwendung disubstituierter Dithiocarbaminat-Verbindungen für analytische Trennungen , 1957 .

[28]  J. Goksøyr The Effect of Some Dithiocarbamyl Compounds on the Metabolism of Fungi , 1955 .

[29]  M. Freund,et al.  Ueber die Einwirkung von Brom auf Aethyl- und Phenylsenföl , 1895 .