An Improved APSO-SQP with Adaptive Transition Strategy for Dynamic Optimization

Abstract This paper employs a logistical regression classifier for combining particle swarm optimizer and local optimizer to solve dynamic optimization problems. It achieves the ability of automatic transition from global optimizer to local optimizer according to the state of solutions. The particle swarm optimizer is used to globally search for a good approximation of the solution and then SQP is applied as the local optimizer for quickly converging to the optima. Experimental results on two complex chemical processes demonstrate that the proposed method can get comparable and even better results than the existed methods in precision and especially in function evaluations.

[1]  Ravindra D. Gudi,et al.  Optimal Grade Transition in Polymerization Reactors: A Comparative Case Study† , 2006 .

[2]  V. K. Jayaraman,et al.  Dynamic Optimization of Fed‐Batch Bioreactors Using the Ant Algorithm , 2001, Biotechnology progress.

[3]  Kok Lay Teo,et al.  A new computational algorithm for functional inequality constrained optimization problems , 1993, Autom..

[4]  Duc Truong Pham,et al.  Dynamic optimisation by a modified bees algorithm , 2012, J. Syst. Control. Eng..

[5]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[6]  W. Fred Ramirez,et al.  Optimal fed‐batch control of induced foreign protein production by recombinant bacteria , 1994 .

[7]  Simant R. Upreti,et al.  A new robust technique for optimal control of chemical engineering processes , 2004, Comput. Chem. Eng..

[8]  Bhaskar D. Kulkarni,et al.  Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes , 2008, Eur. J. Oper. Res..

[9]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[10]  R. Luus,et al.  Optimal Control of Inequality State Constrained Systems , 1997 .

[11]  R. Luus,et al.  Optimization of Fed-Batch Reactors by the Luus−Jaakola Optimization Procedure , 1999 .

[12]  B. V. Babu,et al.  Modified differential evolution (MDE) for optimization of non-linear chemical processes , 2006, Comput. Chem. Eng..

[13]  Xu Chen,et al.  Hybrid gradient particle swarm optimization for dynamic optimization problems of chemical processes , 2013 .

[14]  Julio R. Banga,et al.  Extended ant colony optimization for non-convex mixed integer nonlinear programming , 2009, Comput. Oper. Res..

[15]  Kapil Gupta,et al.  Dynamic Optimization of Chemical Processes using Ant Colony Framework , 2001, Comput. Chem..

[16]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[17]  Bing Zhang,et al.  Iterative ant-colony algorithm and its application to dynamic optimization of chemical process , 2005, Comput. Chem. Eng..

[18]  W. Ramirez,et al.  Optimal production of secreted protein in fed‐batch reactors , 1988 .

[19]  Rakesh Angira,et al.  Optimization of dynamic systems: A trigonometric differential evolution approach , 2007, Comput. Chem. Eng..

[20]  Kok Lay Teo,et al.  Optimal control computation for nonlinear systems with state-dependent stopping criteria , 2012, Autom..

[21]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[22]  W. Fred Ramirez,et al.  Optimization of Fed‐Batch Bioreactors Using Neural Network Parameter Function Models , 1996 .

[23]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[24]  Johannes Andries Roubos,et al.  An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance , 1999 .

[25]  Debasis Sarkar,et al.  ANNSA: a hybrid artificial neural network/simulated annealing algorithm for optimal control problems , 2003 .

[26]  Jose A. Egea,et al.  Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method , 2009 .

[27]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[28]  Kok Lay Teo,et al.  Optimal control problems with multiple characteristic time points in the objective and constraints , 2008, Autom..

[29]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).