An Improved Approximation Algorithm for Computing Geometric Shortest Paths
暂无分享,去创建一个
Jörg-Rüdiger Sack | Anil Maheshwari | Lyudmil Aleksandrov | A. Maheshwari | L. Aleksandrov | Jörg-Rüdiger Sack
[1] Micha Sharir,et al. On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..
[2] John F. Canny,et al. New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[3] Mark Ziegelmann. Constrained shortest paths and related problems , 2001 .
[4] Subhash Suri,et al. Practical methods for approximating shortest paths on a convex polytope in R3 , 1995, SODA '95.
[5] S. Suri,et al. Practical methods for approximating shortest paths on a convex polytope in R 3 , 1995, SODA 1995.
[6] Micha Sharir,et al. Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.
[7] Jörg-Rüdiger Sack,et al. Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.
[8] Pankaj K. Agarwal,et al. Computing Approximate Shortest Paths on Convex Polytopes , 2001, Algorithmica.
[9] Christos H. Papadimitriou,et al. An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..
[10] Jörg-Rüdiger Sack,et al. An epsilon-Approximation for Weighted Shortest Paths on Polyhedral Surfaces , 1998, SWAT.
[11] Jörg-Rüdiger Sack,et al. Approximation algorithms for geometric shortest path problems , 2000, STOC '00.
[12] Sanjiv Kapoor,et al. Efficient computation of geodesic shortest paths , 1999, STOC '99.
[13] Jörg-Rüdiger Sack,et al. Approximating Shortest Paths on Weighted Polyhedral Surfaces , 2001, Algorithmica.
[14] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[15] Yijie Han,et al. Shortest paths on a polyhedron , 1990, SCG '90.
[16] Pankaj K. Agarwal,et al. Approximating Shortest Paths on a Nonconvex Polyhedron , 2000, SIAM J. Comput..
[17] Stefan Arnborg,et al. Algorithm Theory — SWAT'98 , 1998, Lecture Notes in Computer Science.
[18] Zheng Sun,et al. BUSHWHACK: An Approximation Algorithm for Minimal Paths through Pseudo-Euclidean Spaces , 2001, ISAAC.
[19] Joseph S. B. Mitchell,et al. The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.