Adaptive hpq-finite element methods of hierarchical models for plate- and shell-like structures

A four-step adaptive strategy for hpq-finite element approximations of hierarchical models of the thin plate- and shell-like structures is derived based on a priori and a posteriori error estimations. This strategy controls three parameters; the model level q, the mesh size h, and the approximation order p so as to produce quasi-optimal hierarchical models and finite element meshes. Numerical results are given supporting the theoretical results.

[1]  I. Babuska,et al.  On a dimensional reduction method. I. The optimal selection of basis functions , 1981 .

[2]  J. Tinsley Oden,et al.  A priori error estimations of hp-finite element approximations for hierarchical models of plate- and shell-like structures , 1996 .

[3]  W. Flügge,et al.  Tensor Analysis and Continuum Mechanics , 1972 .

[4]  T. J. Lardner,et al.  MECHANICS OF SOLIDS WITH APPLICATIONS TO THIN BODIES - WEMPNER,G , 1982 .

[5]  Christoph Schwab,et al.  A-posteriori modeling error estimation for hierarchic plate models , 1996 .

[6]  Abani K. Patra,et al.  A parallel adaptive strategy for hp finite element computations , 1995 .

[7]  A. Kalnins,et al.  Thin elastic shells , 1967 .

[8]  J. Z. Zhu,et al.  Effective and practical h–p‐version adaptive analysis procedures for the finite element method , 1989 .

[9]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[10]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[11]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[12]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[13]  E. Stein,et al.  h - and d -adaptive FE methods for two-dimensional structural problems including post-buckling of shells , 1992 .

[14]  Ivo Babuška,et al.  On a dimensional reduction method. III. A posteriori error estimation and an adaptive approach , 1981 .

[15]  B. Szabó Mesh design for the p-version of the finite element method , 1986 .

[16]  Ivo Babuška,et al.  A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains , 1996 .

[17]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[18]  Ahmed K. Noor,et al.  Hierarchical adaptive modeling of structural sandwiches and multilayered composite panels , 1994 .

[19]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[20]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[21]  J. T. Oden,et al.  A priori modeling error estimates of hierarchical models for elasticity problems for plate- and shell-like structures , 1996 .

[22]  A. K. Norr,et al.  Adaptive, Multilevel, and Hierarchical Computational Strategies , 1992 .

[23]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[24]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[25]  J. Pitkäranta The problem of membrane locking in finite element analysis of cylindrical shells , 1992 .

[26]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .