Designer proteins: applications of genetic code expansion in cell biology

Designer amino acids, beyond the canonical 20 that are normally used by cells, can now be site-specifically encoded into proteins in cells and organisms. This is achieved using 'orthogonal' aminoacyl-tRNA synthetase–tRNA pairs that direct amino acid incorporation in response to an amber stop codon (UAG) placed in a gene of interest. Using this approach, it is now possible to study biology in vitro and in vivo with an increased level of molecular precision. This has allowed new biological insights into protein conformational changes, protein interactions, elementary processes in signal transduction and the role of post-translational modifications.

[1]  P. Schultz,et al.  A genetically encoded infrared probe. , 2006, Journal of the American Chemical Society.

[2]  A. Kirchmaier,et al.  HST3/HST4-dependent deacetylation of lysine 56 of histone H3 in silent chromatin. , 2008, Molecular biology of the cell.

[3]  P. Schultz,et al.  The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination , 2004, Nature Biotechnology.

[4]  J. Chin,et al.  Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. , 2009, Journal of the American Chemical Society.

[5]  Michael Grunstein,et al.  Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. , 2007, Molecular cell.

[6]  M. Bienz,et al.  Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. , 2008, Genes & development.

[7]  R. Mehl,et al.  Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. , 2007, Journal of the American Chemical Society.

[8]  J. Chin,et al.  Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. , 2008, Nature chemical biology.

[9]  J. Chin,et al.  Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. , 2010, Nature chemical biology.

[10]  T. Endo,et al.  Tom7 Regulates Mdm10-mediated Assembly of the Mitochondrial Import Channel Protein Tom40* , 2010, The Journal of Biological Chemistry.

[11]  P. Schultz,et al.  Genetic introduction of a diketone-containing amino acid into proteins. , 2006, Bioorganic & medicinal chemistry letters.

[12]  Total chemical synthesis of di-ubiquitin chains. , 2010, Angewandte Chemie.

[13]  P. Schultz,et al.  A method to site-specifically introduce methyllysine into proteins in E. coli. , 2010, Chemical communications.

[14]  M. Oyama,et al.  Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. , 2011, Journal of molecular biology.

[15]  Michael Grunstein,et al.  Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. , 2009, Molecular cell.

[16]  Relly Brandman,et al.  Two-dimensional NMR and All-atom Molecular Dynamics of Cytochrome P450 CYP119 Reveal Hidden Conformational Substates* , 2010, The Journal of Biological Chemistry.

[17]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[18]  Samuel Thompson,et al.  A fluorophore ligase for site-specific protein labeling inside living cells , 2010, Proceedings of the National Academy of Sciences.

[19]  P. Schultz,et al.  Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid. , 2011, Bioorganic & medicinal chemistry letters.

[20]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[21]  B. Garcia,et al.  Organismal Differences in Post-translational Modifications in Histones H3 and H4* , 2007, Journal of Biological Chemistry.

[22]  Tom W Muir,et al.  Protein ligation: an enabling technology for the biophysical analysis of proteins , 2006, Nature Methods.

[23]  F. Robert,et al.  Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. , 2007, Molecular cell.

[24]  P. Schultz,et al.  Site‐Specific in vivo Labeling of Proteins for NMR Studies , 2005, Chembiochem : a European journal of chemical biology.

[25]  J. Boeke,et al.  The Sirtuins Hst3 and Hst4p Preserve Genome Integrity by Controlling Histone H3 Lysine 56 Deacetylation , 2006, Current Biology.

[26]  Jeffrey G. Linger,et al.  Acetylated Lysine 56 on Histone H3 Drives Chromatin Assembly after Repair and Signals for the Completion of Repair , 2008, Cell.

[27]  Zhiyong Wang,et al.  Genetic incorporation of an aliphatic keto-containing amino acid into proteins for their site-specific modifications. , 2010, Bioorganic & medicinal chemistry letters.

[28]  S. Yokoyama,et al.  Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid , 2005, Nature Methods.

[29]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[30]  Kai Johnsson,et al.  How to obtain labeled proteins and what to do with them. , 2010, Current opinion in biotechnology.

[31]  Neil L Kelleher,et al.  Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Warmus,et al.  Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition , 2004, Nature Structural &Molecular Biology.

[33]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[34]  H. Ke,et al.  Similarities and differences between human cyclophilin A and other beta-barrel structures. Structural refinement at 1.63 A resolution. , 1992 .

[35]  H. Bernstein,et al.  Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane , 2009, Proceedings of the National Academy of Sciences.

[36]  Peng R. Chen,et al.  A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. , 2011, Nature chemical biology.

[37]  J. Chin,et al.  A Method for Genetically Installing Site-Specific Acetylation in Recombinant Histones Defines the Effects of H3 K56 Acetylation , 2009, Molecular cell.

[38]  Wei Zhang,et al.  A biosynthetic route to photoclick chemistry on proteins. , 2010, Journal of the American Chemical Society.

[39]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[40]  P. Schultz,et al.  Addition of the keto functional group to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Kigawa,et al.  Regioselective Carbon–Carbon Bond Formation in Proteins with Palladium Catalysis; New Protein Chemistry by Organometallic Chemistry , 2006, Chembiochem : a European journal of chemical biology.

[42]  Xue‐Wei Liu,et al.  Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine. , 2010, Chemical communications.

[43]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[44]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[46]  P. Schultz,et al.  Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. , 2009, Journal of the American Chemical Society.

[47]  A. Fersht,et al.  Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration , 2011, Proceedings of the National Academy of Sciences.

[48]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[49]  James A Van Deventer,et al.  Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. , 2010, Current opinion in chemical biology.

[50]  Francis B. Peters,et al.  Site-directed spin labeling of a genetically encoded unnatural amino acid , 2009, Proceedings of the National Academy of Sciences.

[51]  R. Roeder,et al.  Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation , 2008, Nature.

[52]  F. Hartl,et al.  Real-time observation of trigger factor function on translating ribosomes , 2006, Nature.

[53]  J. Chin,et al.  Traceless and Site-Specific Ubiquitination of Recombinant Proteins , 2011, Journal of the American Chemical Society.

[54]  Zhiguo Zhang,et al.  Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly , 2008, Cell.

[55]  Wenjiao Song,et al.  Selective functionalization of a genetically encoded alkene-containing protein via "photoclick chemistry" in bacterial cells. , 2008, Journal of the American Chemical Society.

[56]  Xue‐Wei Liu,et al.  Dual native chemical ligation at lysine. , 2009, Journal of the American Chemical Society.

[57]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[58]  Brian A. Smith,et al.  A new strategy for the site-specific modification of proteins in vivo. , 2003, Biochemistry.

[59]  P. Schultz,et al.  Selective Staudinger Modification of Proteins Containing p‐Azidophenylalanine , 2005, Chembiochem : a European journal of chemical biology.

[60]  Peter G Schultz,et al.  A genetically encoded photocaged tyrosine. , 2006, Angewandte Chemie.

[61]  Tom A. Rapoport,et al.  Retrotranslocation of a Misfolded Luminal ER Protein by the Ubiquitin-Ligase Hrd1p , 2010, Cell.

[62]  M. Francis,et al.  Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. , 2008, Chemical communications.

[63]  Peter G Schultz,et al.  A genetically encoded fluorescent amino acid. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  S. Thao,et al.  N ε−Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity , 2010, PloS one.

[65]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[66]  Guifang Wang,et al.  Protein (19)F NMR in Escherichia coli. , 2010, Journal of the American Chemical Society.

[67]  H. Lashuel,et al.  Highly efficient and chemoselective peptide ubiquitylation. , 2009, Angewandte Chemie.

[68]  K. Furtak,et al.  A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL. , 2009, Bioorganic & medicinal chemistry letters.

[69]  J. Chin,et al.  Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair , 2010, Journal of the American Chemical Society.

[70]  F. Hartl,et al.  Coupled chaperone action in folding and assembly of hexadecameric Rubisco , 2010, Nature.

[71]  Susan E. Cellitti,et al.  In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. , 2008, Journal of the American Chemical Society.

[72]  J. Chin,et al.  Genetically encoding N(epsilon)-methyl-L-lysine in recombinant histones. , 2009, Journal of the American Chemical Society.

[73]  N. Johnsson,et al.  Specific labeling of cell surface proteins with chemically diverse compounds. , 2004, Journal of the American Chemical Society.

[74]  T. Huber,et al.  FTIR analysis of GPCR activation using azido probes. , 2009, Nature chemical biology.

[75]  F. Hartl,et al.  Identification of Nascent Chain Interaction Sites on Trigger Factor* , 2007, Journal of Biological Chemistry.

[76]  M. Chan,et al.  A pyrrolysine analogue for protein click chemistry. , 2009, Angewandte Chemie.

[77]  M. Grunstein,et al.  Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast , 2005, Cell.

[78]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[79]  Satpal Virdee,et al.  Genetically directing ɛ-N, N-dimethyl-L-lysine in recombinant histones. , 2010, Chemistry & biology.

[80]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[81]  J. Chin,et al.  Genetically encoded photocontrol of protein localization in mammalian cells. , 2010, Journal of the American Chemical Society.

[82]  Peter G Schultz,et al.  A genetically encoded photocaged amino acid. , 2004, Journal of the American Chemical Society.

[83]  T. Kigawa,et al.  Site‐Specific Functionalization of Proteins by Organopalladium Reactions , 2006, Chembiochem : a European journal of chemical biology.

[84]  Peter G Schultz,et al.  Probing Protein–Protein Interactions with a Genetically Encoded Photo‐crosslinking Amino Acid , 2011, Chembiochem : a European journal of chemical biology.

[85]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[86]  Christopher D. Spicer,et al.  Palladium-mediated site-selective Suzuki-Miyaura protein modification at genetically encoded aryl halides. , 2011, Chemical Communications.

[87]  P. Schultz,et al.  Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. , 2003, Journal of the American Chemical Society.

[88]  Hidde L Ploegh,et al.  Sortagging: a versatile method for protein labeling. , 2007, Nature chemical biology.

[89]  Miroslav Hodak,et al.  Recent developments and applications of the real-space multigrid method , 2008 .

[90]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[91]  Zhiyong Wang,et al.  A genetically encoded photocaged Nepsilon-methyl-L-lysine. , 2010, Molecular bioSystems.

[92]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[93]  S. Yokoyama,et al.  Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. , 2008, Biochemical and biophysical research communications.

[94]  Carolyn R Bertozzi,et al.  Bringing chemistry to life , 2011, Nature Methods.

[95]  C. Bertozzi,et al.  Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes , 2007, Nature Biotechnology.

[96]  R. Mehl,et al.  Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization , 2007, Nature Protocols.

[97]  Tobias Haslberger,et al.  M domains couple the ClpB threading motor with the DnaK chaperone activity. , 2007, Molecular cell.

[98]  T. Rapoport,et al.  Structure of a complex of the ATPase SecA and the protein-translocation channel , 2008, Nature.

[99]  T. Sixma,et al.  Chemical Synthesis of Ubiquitin, Ubiquitin-Based Probes, and Diubiquitin** , 2010, Angewandte Chemie.

[100]  Uri Alon,et al.  Dynamics and variability of ERK2 response to EGF in individual living cells. , 2009, Molecular cell.

[101]  C. Weise,et al.  Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins. , 2009, Angewandte Chemie.

[102]  David Hawke,et al.  A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response , 2005, Nature.

[103]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[104]  P. Schultz,et al.  Expanding the genetic code. , 2006, Annual review of biophysics and biomolecular structure.

[105]  S. Hahn,et al.  Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. , 2008, Genes & development.

[106]  P. Schultz,et al.  A genetically encoded boronate-containing amino acid. , 2008, Angewandte Chemie.

[107]  P. Schultz,et al.  A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. , 2007, ACS chemical biology.

[108]  R. Körner,et al.  Phosphorylation-dependent Binding of Cyclin B1 to a Cdc6-like Domain of Human Separase* , 2008, Journal of Biological Chemistry.

[109]  P. Schultz,et al.  A Genetically Encoded Diazirine Photocrosslinker in Escherichia coli , 2007, Chembiochem : a European journal of chemical biology.

[110]  A. McMahon,et al.  An eight residue fragment of an acyl carrier protein suffices for post-translational introduction of fluorescent pantetheinyl arms in protein modification in vitro and in vivo. , 2008, Journal of the American Chemical Society.

[111]  Peter G Schultz,et al.  Control of protein phosphorylation with a genetically encoded photocaged amino acid. , 2007, Nature chemical biology.

[112]  P. Schultz,et al.  Substrate recognition by the AAA+ chaperone ClpB , 2004, Nature Structural &Molecular Biology.

[113]  A. Slusarczyk,et al.  De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. , 2010, Journal of the American Chemical Society.

[114]  Wenjiao Song,et al.  Fast alkene functionalization in vivo by Photoclick chemistry: HOMO lifting of nitrile imine dipoles. , 2009, Angewandte Chemie.

[115]  P. Schultz,et al.  In vivo incorporation of an alkyne into proteins in Escherichia coli. , 2005, Bioorganic & medicinal chemistry letters.

[116]  G. Wagner,et al.  Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[117]  J. Chin,et al.  Genetically encoding an aliphatic diazirine for protein photocrosslinking , 2011 .

[118]  T. Richmond,et al.  Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. , 2002, Journal of molecular biology.

[119]  W. R. Burack,et al.  The activating dual phosphorylation of MAPK by MEK is nonprocessive. , 1997, Biochemistry.

[120]  Michael T. Taylor,et al.  Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. , 2012, Journal of the American Chemical Society.

[121]  K. Chiang,et al.  Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. , 2009, ACS chemical biology.

[122]  M. Chan,et al.  A pyrrolysine analogue for site-specific protein ubiquitination. , 2009, Angewandte Chemie.

[123]  David Komander,et al.  Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains , 2009, EMBO reports.

[124]  P. Schultz,et al.  A Genetically Encoded ε‐N‐Methyl Lysine in Mammalian Cells , 2010, Chembiochem : a European journal of chemical biology.

[125]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[126]  Andrew B. Martin,et al.  Generation of a bacterium with a 21 amino acid genetic code. , 2003, Journal of the American Chemical Society.

[127]  P. Schultz,et al.  A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer. , 2008, Journal of the American Chemical Society.

[128]  Peng R. Chen,et al.  A facile system for encoding unnatural amino acids in mammalian cells. , 2009, Angewandte Chemie.

[129]  David T. Lynch,et al.  In vivo stable tumor-specific painting in various colors using dehalogenase-based protein-tag fluorescent ligands. , 2009, Bioconjugate chemistry.

[130]  T. Muir,et al.  Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. , 2011, Journal of the American Chemical Society.

[131]  J. Luban,et al.  Specific incorporation of cyclophilin A into HIV-1 virions , 1994, Nature.

[132]  Kirk C. Hansen,et al.  CBP / p300-mediated acetylation of histone H3 on lysine 56 , 2009, Nature.

[133]  Yi Zhang,et al.  Tudor, MBT and chromo domains gauge the degree of lysine methylation , 2006, EMBO reports.

[134]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[135]  M. Mann,et al.  4. Proteomic Analysis of Posttranslational Modifications , 2013 .

[136]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[137]  Sonny C. Hsiao,et al.  Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. , 2009, Journal of the American Chemical Society.

[138]  Michael M. Madden,et al.  A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. , 2008, Angewandte Chemie.

[139]  T. Muir,et al.  Auxiliary-mediated site-specific peptide ubiquitylation. , 2007, Angewandte Chemie.

[140]  T. Muir,et al.  Biological Applications of Protein Splicing , 2010, Cell.

[141]  Masaki Yamamoto,et al.  Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein , 2010, Nature.

[142]  Hidde L. Ploegh,et al.  Site-Specific N- and C-Terminal Labeling of a Single Polypeptide Using Sortases of Different Specificity , 2009, Journal of the American Chemical Society.

[143]  P. Schultz,et al.  Adding L-3-(2-Naphthyl)alanine to the genetic code of E. coli. , 2002, Journal of the American Chemical Society.

[144]  T. Schmidt,et al.  spFRET using alternating excitation and FCS reveals progressive DNA unwrapping in nucleosomes. , 2009, Biophysical journal.

[145]  Youngchang Kim,et al.  Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. , 2003, Genes & development.

[146]  Peter G. Schultz,et al.  A chemical toolkit for proteins — an expanded genetic code , 2006, Nature Reviews Molecular Cell Biology.

[147]  Koreaki Ito,et al.  Different modes of SecY–SecA interactions revealed by site-directed in vivo photo-cross-linking , 2006, Proceedings of the National Academy of Sciences.

[148]  Zhijian J. Chen,et al.  Nonproteolytic functions of ubiquitin in cell signaling. , 2009, Molecular cell.

[149]  Andrew B. Martin,et al.  Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[150]  A. Schepartz,et al.  Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. , 2009, Journal of the American Chemical Society.

[151]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[152]  J. Chin,et al.  Light-Activated Kinases Enable Temporal Dissection of Signaling Networks in Living Cells , 2011, Journal of the American Chemical Society.

[153]  H. Koch,et al.  Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. , 2009, Journal of molecular biology.

[154]  Andrew B. Martin,et al.  Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. , 2002, Journal of the American Chemical Society.

[155]  D. Fushman,et al.  Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme. , 2011, Journal of the American Chemical Society.

[156]  M. Carson,et al.  Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). , 1993, The Journal of biological chemistry.

[157]  Yixue Li,et al.  Regulation of Cellular Metabolism by Protein Lysine Acetylation , 2010, Science.

[158]  E. Lemke,et al.  Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.

[159]  M. Mann,et al.  Proteomic analysis of post-translational modifications , 2003, Nature Biotechnology.

[160]  Jef D. Boeke,et al.  Insights into the Role of Histone H3 and Histone H4 Core Modifiable Residues in Saccharomyces cerevisiae , 2005, Molecular and Cellular Biology.

[161]  S. Hahn,et al.  The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex , 2007, Nature Structural &Molecular Biology.

[162]  H. Tokuda,et al.  Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB , 2009, Proceedings of the National Academy of Sciences.

[163]  J. Sodroski,et al.  Functional association of cyclophilin A with HIV-1 virions , 1994, Nature.

[164]  Salvatore Spicuglia,et al.  Characterization of Lysine 56 of Histone H3 as an Acetylation Site in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[165]  Junhong Han,et al.  Rtt109 Acetylates Histone H3 Lysine 56 and Functions in DNA Replication , 2007, Science.

[166]  T. Sakmar,et al.  Tracking G-protein-coupled receptor activation using genetically encoded infrared probes , 2010, Nature.

[167]  Peter G Schultz,et al.  Protein evolution with an expanded genetic code , 2008, Proceedings of the National Academy of Sciences.

[168]  P. Schultz,et al.  Site-specific PEGylation of proteins containing unnatural amino acids. , 2004, Bioorganic & medicinal chemistry letters.

[169]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[170]  Robert Driscoll,et al.  Yeast Rtt109 Promotes Genome Stability by Acetylating Histone H3 on Lysine 56 , 2007, Science.

[171]  J. Chin,et al.  Genetically encoding protein oxidative damage. , 2008, Journal of the American Chemical Society.

[172]  P. Schultz,et al.  A genetically encoded fluorescent amino acid. , 2006, Journal of the American Chemical Society.

[173]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[174]  T. Huber,et al.  Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis* , 2008, Journal of Biological Chemistry.

[175]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[176]  J. Tyler,et al.  Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation , 2008, Proceedings of the National Academy of Sciences.

[177]  J. Chin,et al.  Expanding the Genetic Code of an Animal , 2011, Journal of the American Chemical Society.

[178]  Peter G Schultz,et al.  A phage display system with unnatural amino acids. , 2004, Journal of the American Chemical Society.

[179]  David Komander,et al.  Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne , 2010, Nature Structural &Molecular Biology.

[180]  J. Chin,et al.  A dual role of H4K16 acetylation in the establishment of yeast silent chromatin , 2011, The EMBO journal.

[181]  H. Walden,et al.  Selenium incorporation using recombinant techniques , 2010, Acta crystallographica. Section D, Biological crystallography.

[182]  J. Chin,et al.  Acetylation regulates Cyclophilin A catalysis, immunosuppression and HIV isomerization , 2010, Nature chemical biology.

[183]  P. Schultz,et al.  Recombinant expression of selectively sulfated proteins in Escherichia coli , 2006, Nature Biotechnology.

[184]  Ryohei Ishii,et al.  Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. , 2008, Chemistry & biology.