Bar-driven Dark Halo Evolution: A Resolution of the Cusp-Core Controversy

Simulations predict that the dark matter halos of galaxies should have central cusps, while those inferred from observed galaxies do not have cusps. We demonstrate, using both linear perturbation theory and n-body simulations, that a disk bar, which should be ubiquitous in forming galaxies, can produce cores in cuspy cold dark matter profiles within five bar orbital times. Simulations of forming galaxies suggest that one of Milky Way size could have a 10 kpc primordial bar; this bar will remove the cusp out to ~2.5 kpc in ~1.5 Gyr, while the disk would lose only ~8% of its original angular momentum. Larger bars would remove the cusp out to correspondingly larger radii. An inner Lindblad-like resonance couples the rotating bar to orbits at all radii through the cusp, transferring the bar-pattern angular momentum to the dark matter cusp, rapidly flattening it. This resonance disappears for profiles with cores and is responsible for a qualitative difference in bar-driven halo evolution with and without a cusp. This bar-induced evolution will have a profound effect on the structure and evolution of almost all galaxies. Hence, both to understand galaxy formation and evolution and to make predictions from theory, it is necessary to resolve these dynamical processes. Unfortunately, correctly resolving these important dynamical processes in ab initio calculations of galaxy formation is a daunting task, requiring at least 4,000,000 halo particles using our SCF code and probably requiring many times more particles when using noisier tree, direct summation, or grid-based techniques—the usual methods employed in such calculations.

[1]  M. Steinmetz,et al.  The hierarchical origin of galaxy morphologies , 2002, astro-ph/0202466.

[2]  Canada.,et al.  Signatures of hierarchical clustering in dark matter detection experiments , 2001, astro-ph/0106048.

[3]  Y. Hoffman,et al.  Dark Halos: The Flattening of the Density Cusp by Dynamical Friction , 2001, astro-ph/0103386.

[4]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[5]  K. Freeman,et al.  The Various Kinematics of Dwarf Irregular Galaxies in Nearby Groups and Their Dark Matter Distributions , 2000 .

[6]  O. Valenzuela,et al.  Formation and Structure of Halos in a Warm Dark Matter Cosmology , 2000, astro-ph/0010525.

[7]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[8]  M. Weinberg Noise-driven evolution in stellar systems - I. Theory , 2000, astro-ph/0007275.

[9]  M. Weinberg Noise-driven evolution in stellar systems - II. A universal halo profile , 2000, astro-ph/0007276.

[10]  P. Amram,et al.  Accurate Determination of the Mass Distribution in Spiral Galaxies. II. Testing the Shape of Dark Halos , 2000, astro-ph/0006449.

[11]  J. A. Sellwood,et al.  Constraints from Dynamical Friction on the Dark Matter Content of Barred Galaxies , 2000, astro-ph/0006275.

[12]  R. Swaters,et al.  Dwarf galaxy rotation curves and the core problem of dark matter haloes , 2000, astro-ph/0006048.

[13]  Turner,et al.  Annihilating cold dark matter , 2000, Physical review letters.

[14]  Renyue Cen,et al.  Decaying Cold Dark Matter Model and Small-Scale Power , 2000, astro-ph/0005206.

[15]  V. Avila-Reese,et al.  Substructure and Halo Density Profiles in a Warm Dark Matter Cosmology , 2000, astro-ph/0004115.

[16]  J. Silk,et al.  The dark matter problem in disc galaxies , 2000, astro-ph/0003199.

[17]  J. Goodman Repulsive dark matter , 2000, astro-ph/0003018.

[18]  P. Peebles,et al.  Fluid Dark Matter , 2000, The Astrophysical journal.

[19]  M. Steinmetz,et al.  Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes , 2000, astro-ph/0001003.

[20]  Liddle,et al.  The dearth of halo dwarf galaxies: is there power on short scales? , 1999, Physical review letters.

[21]  D. Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[22]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[23]  Matthias Steinmetz,et al.  The Cosmological Origin of the Tully-Fisher Relation , 1998, astro-ph/9808076.

[24]  Martin D. Weinberg,et al.  An Adaptive Algorithm for N-Body Field Expansions , 1998, astro-ph/9805357.

[25]  Usa,et al.  Testing Modified Newtonian Dynamics with Low Surface Brightness Galaxies: Rotation Curve Fits , 1998, astro-ph/9805120.

[26]  V. Debattista,et al.  Dynamical Friction and the Distribution of Dark Matter in Barred Galaxies , 1997, astro-ph/9710039.

[27]  F. Pearce,et al.  Hydra: a parallel adaptive grid code , 1997, astro-ph/9703183.

[28]  J. Collett,et al.  On the Origin of Cusps in Stellar Systems , 1997, astro-ph/9702085.

[29]  G. Lake,et al.  Morphological Transformation from Galaxy Harassment , 1997, astro-ph/9701211.

[30]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[31]  S. White,et al.  Dark halo mergers and the formation of a universal profile , 1996, astro-ph/9611065.

[32]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[33]  D. Merritt,et al.  Instabilities of Counterrotating Stellar Disks , 1994 .

[34]  J. Primack,et al.  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[35]  S. Faber,et al.  Rotation curves from baryonic infall : dependence on disk-to-halo ratio, initial angular momentum, and core radius, and comparison with data , 1993 .

[36]  L. Hernquist,et al.  Bar-spheroid interaction in galaxies , 1992 .

[37]  Jeremiah P. Ostriker,et al.  A self-consistent field method for galactic dynamics , 1992 .

[38]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[39]  J. Gunn,et al.  Dissipational Galaxy Formation. I. Effects of Gasdynamics , 1991 .

[40]  R. Sancisi,et al.  Dark matter in spiral galaxies , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[41]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[42]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[43]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[44]  M. Weinberg Evolution of barred galaxies by dynamical friction , 1985 .

[45]  J. Kormendy Rotation of the bulge components of barred galaxies , 1982 .

[46]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[47]  G. D. V. Albada,et al.  Gas dynamics in barred spirals: Gaseous density waves and galactic shocks , 1979 .

[48]  A. Kalnajs Dynamics of flat galaxies. II. Biorthonormal surface density-potential pairs for finite disks , 1976 .

[49]  M. Clutton-Brock The gravitational field of three-dimensional galaxies , 1973 .

[50]  M. Clutton-Brock The gravitational field of flat galaxies , 1972 .

[51]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[52]  M. Taiji,et al.  GRAPE-5: A Special-Purpose Computer for iV-Body Simulations , 2013 .

[53]  T. Mahoney,et al.  The central KPC of starbursts and AGN : the la Palma connection : proceedings of a confernce held in Los Cancajos, la Palma, Spain, 7-11 May 2001 , 2001 .

[54]  N. Panagia,et al.  The central KPC of starbursts and AGN : the la Palma connection : proceedings of a confernce held in Los Cancajos, la Palma, Spain, 7-11 May 2001 , 2001 .

[55]  Received...; accepted... , 1998 .

[56]  J. Bergeron The Early Universe with the VLT , 1997 .