High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition

III–V semiconductor solar cells have demonstrated the highest power conversion efficiencies to date. However, the cost of III-V solar cells has historically been too high to be practical outside of specialty applications. This stems from the cost of raw materials, need for a lattice-matched substrate for single-crystal growth, and complex epitaxial growth processes. To address these challenges, here, we explore the direct non-epitaxial growth of thin poly-crystalline films of III-Vs on metal substrates by using metalorganic chemical vapor deposition. This method minimizes the amount of raw material used while utilizing a low cost substrate. Specifically, we focus on InP which is known to have a low surface recombination velocity of carriers, thereby, making it an ideal candidate for efficient poly-crystalline cells where surface/interface properties at the grain boundaries are critical. The grown InP films are 1-3 μm thick and are composed of micron-sized grains that generally extend from the surface to t...

[1]  H. J. Hagger,et al.  Solid State Electronics , 1960, Nature.

[2]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[3]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[4]  G. Bruno,et al.  Luminescence study of the disorder in polycrystalline InP thin films , 2001 .

[5]  T. Saitoh,et al.  Growth and Structure of Polycrystalline Indium Phosphide Layers on Molybdenum Sheets , 1976 .

[6]  T. Saitoh,et al.  Electrical Properties of n‐Type Polycrystalline Indium Phosphide Films , 1977 .

[7]  G. D. Pettit,et al.  Exciton Absorption and Emission in InP , 1964 .

[8]  Mártin,et al.  Up to fifth-order Raman scattering of InP under nonresonant conditions. , 1994, Physical review. B, Condensed matter.

[9]  T. Saitoh,et al.  Polycrystalline Indium Phosphide Solar Cells Fabricated on Molybdenum Substrates , 1977 .

[10]  D. Dunlavy,et al.  Photoluminescence lifetime in heterojunctions , 1988 .

[11]  Etienne Goovaerts,et al.  Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000 , 2000 .

[12]  A. Mooradian,et al.  First order Raman effect in III–V compounds , 1966 .

[13]  T. Mallouk,et al.  Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111). , 2008, Nano letters (Print).

[14]  R. Stirn,et al.  A Schottky-barrier solar cell on sliced polycrystalline GaAs , 1978 .

[15]  S. Wagner,et al.  Polycrystalline thin‐film InP/CdS solar cell , 1976 .

[16]  Maciej Bugajski,et al.  Concentration‐dependent absorption and photoluminescence of n‐type InP , 1985 .

[17]  Sorab K. Ghandhi,et al.  Surface recombination velocity and lifetime in InP , 1991 .

[18]  Takashi Nakamura,et al.  Effects of optically excited carriers on Raman spectra from InP , 1984 .

[19]  Stephen R. Forrest,et al.  Multiple growths of epitaxial lift-off solar cells from a single InP substrate , 2010 .

[20]  David D. Nolte,et al.  Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs , 1990 .

[21]  R. Annan Photovoltaics. , 1985, Science.

[22]  Tae Joon Seok,et al.  Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. , 2011, Nano letters.

[23]  L. Jastrzebski,et al.  Application of scanning electron microscopy to determination of surface recombination velocity: GaAs , 1975 .

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  D. Dunlavy,et al.  Minority-carrier lifetime in ITO/InP heterojunctions , 1988 .

[26]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[27]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[28]  Shapira,et al.  Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP. , 1992, Physical review. B, Condensed matter.

[29]  S. Franssila,et al.  Thin Solid Films , 2009 .

[30]  P. Borcherds,et al.  Phonon frequencies from the Raman spectrum of indium phosphide , 1972 .

[31]  H. Gottschalk,et al.  Stacking fault energy and ionicity of cubic III–V compounds , 1978 .

[32]  F. Komarov,et al.  Wurtzite InP formation during swift Xe-ion irradiation , 2000 .

[33]  T. Saitoh,et al.  Initial growth behaviour of indium phosphide on molybdenum substrates , 1978 .

[34]  H. Atwater,et al.  High efficiency InGaAs solar cells on Si by InP layer transfer , 2007 .

[35]  Shapira,et al.  Evidence for low intrinsic surface-recombination velocity on p-type InP. , 1991, Physical review. B, Condensed matter.