L-effect Algebras

L-effect algebras are introduced as a class of L-algebras which specialize to all known generalizations of effect algebras with a $$\wedge $$ -semilattice structure. Moreover, L-effect algebras X arise in connection with quantum sets and Frobenius algebras. The translates of X in the self-similar closure S(X) form a covering, and the structure of X is shown to be equivalent to the compatibility of overlapping translates. A second characterization represents an L-effect algebra in the spirit of closed categories. As an application, it is proved that every lattice effect algebra is an interval in a right $$\ell $$ -group, the structure group of the corresponding L-algebra. A block theory for generalized lattice effect algebras, and the existence of a generalized OML as the subalgebra of sharp elements are derived from this description.

[1]  Usa Sasaki Orthocomplemented Lattices Satisfying the Exchange Axiom , 1954 .

[2]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[3]  David J. Foulis,et al.  Interval and Scale Effect Algebras , 1997 .

[4]  G. Ludwig,et al.  Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien , 1964 .

[5]  Wolfgang Rump The structure group of an L-algebra is torsion-free , 2016 .

[6]  Z. Riecanová,et al.  Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .

[7]  Zdenka Riečanová,et al.  Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .

[8]  C. Tsinakis,et al.  Generalized MV-algebras , 2005 .

[9]  Travis Schedler,et al.  On set-theoretical solutions of the quantum Yang-Baxter equation , 1997 .

[10]  Zdenka Riecanová,et al.  Generalized homogeneous, prelattice and MV-effect algebras , 2005, Kybernetika.

[11]  A. Dvurecenskij,et al.  Pseudoeffect Algebras. I. Basic Properties , 2001 .

[12]  A. Dvurecenskij,et al.  Pseudoeffect Algebras. II. Group Representations , 2001 .

[13]  Carsten Dietzel,et al.  A right-invariant lattice-order on groups of paraunitary matrices , 2018, Journal of Algebra.

[14]  Zdenka Riečanová,et al.  Sharp Elements in Effect Algebras , 2001 .

[15]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[16]  P. D. Finch On the lattice structure of quantum logic , 1969, Bulletin of the Australian Mathematical Society.

[17]  Wolfgang Rump,et al.  Braces, radical rings, and the quantum Yang–Baxter equation , 2007 .

[18]  Wolfgang Rump,et al.  The Structure Group of a Generalized Orthomodular Lattice , 2018, Stud Logica.

[19]  Wolfgang Rump SEMIDIRECT PRODUCTS IN ALGEBRAIC LOGIC AND SOLUTIONS OF THE QUANTUM YANG–BAXTER EQUATION , 2008 .

[20]  M. Darnel Theory of Lattice-Ordered Groups , 1994 .

[21]  W. Rump Decomposition of Garside groups and self-similar L-algebras , 2017 .

[22]  Richard J. Greechie,et al.  On the structure of orthomodular lattices satisfying the chain condition , 1968 .

[23]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[24]  W. Rump L-algebras, self-similarity, and l-groups , 2008 .

[25]  Bruno Bosbach Rechtskomplementäre Halbgruppen. Axiome, Polynome, Kongruenzen , 1972 .

[26]  A. Dvurecenskij Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.

[27]  David J. Foulis,et al.  Logical Connectives on Lattice Effect Algebras , 2012, Stud Logica.

[28]  W. Rump The L-algebra of Hurwitz primes , 2018, Journal of Number Theory.

[29]  Patrick Dehornoy,et al.  Groups with a complemented presentation , 1997 .

[30]  Wolfgang Rump,et al.  A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .

[31]  Robert Piziak,et al.  Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..

[32]  Wolfgang Rump,et al.  Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation , 2015 .

[33]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[34]  Anatolij Dvurecenskij,et al.  Algebras in the Positive Cone of po-Groups , 2002, Order.

[35]  Alexander Wilce,et al.  Perspectivity and congruence in partial abelian semigroups , 1998 .

[36]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[37]  S. Pulmannová,et al.  Generalized difference posets and orthoalgebras. , 1996 .

[38]  Wolfgang Rump,et al.  Von Neumann algebras, L-algebras, Baer *-monoids, and Garside groups , 2018, Forum Mathematicum.

[39]  Patrick Dehornoy Groupes de Garside , 2001 .

[40]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .

[41]  Stanley Gudder,et al.  S-Dominating Effect Algebras , 1998 .

[42]  Mirko Navara An orthomodular lattice admitting no group-valued measure , 1994 .

[43]  Frantisek Kopka Compatibility in D-posets , 1995 .

[44]  W. Rump,et al.  One-sided orthogonality, orthomodular spaces, quantum sets, and a class of Garside groups , 2019, Journal of Algebra.

[45]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[46]  G. Kalmbach,et al.  AN AXIOMATIZATION FOR ABELIAN RELATIVE INVERSES , 1994 .

[47]  David J. Foulis,et al.  Effects, Observables, States, and Symmetries in Physics , 2007 .

[48]  V. Lebed,et al.  Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation , 2015, 1509.07067.

[49]  Egbert Brieskorn,et al.  Artin-Gruppen und Coxeter-Gruppen , 1972 .

[50]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[51]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .