L-effect Algebras
暂无分享,去创建一个
[1] Usa Sasaki. Orthocomplemented Lattices Satisfying the Exchange Axiom , 1954 .
[2] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[3] David J. Foulis,et al. Interval and Scale Effect Algebras , 1997 .
[4] G. Ludwig,et al. Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien , 1964 .
[5] Wolfgang Rump. The structure group of an L-algebra is torsion-free , 2016 .
[6] Z. Riecanová,et al. Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .
[7] Zdenka Riečanová,et al. Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .
[8] C. Tsinakis,et al. Generalized MV-algebras , 2005 .
[9] Travis Schedler,et al. On set-theoretical solutions of the quantum Yang-Baxter equation , 1997 .
[10] Zdenka Riecanová,et al. Generalized homogeneous, prelattice and MV-effect algebras , 2005, Kybernetika.
[11] A. Dvurecenskij,et al. Pseudoeffect Algebras. I. Basic Properties , 2001 .
[12] A. Dvurecenskij,et al. Pseudoeffect Algebras. II. Group Representations , 2001 .
[13] Carsten Dietzel,et al. A right-invariant lattice-order on groups of paraunitary matrices , 2018, Journal of Algebra.
[14] Zdenka Riečanová,et al. Sharp Elements in Effect Algebras , 2001 .
[15] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[16] P. D. Finch. On the lattice structure of quantum logic , 1969, Bulletin of the Australian Mathematical Society.
[17] Wolfgang Rump,et al. Braces, radical rings, and the quantum Yang–Baxter equation , 2007 .
[18] Wolfgang Rump,et al. The Structure Group of a Generalized Orthomodular Lattice , 2018, Stud Logica.
[19] Wolfgang Rump. SEMIDIRECT PRODUCTS IN ALGEBRAIC LOGIC AND SOLUTIONS OF THE QUANTUM YANG–BAXTER EQUATION , 2008 .
[20] M. Darnel. Theory of Lattice-Ordered Groups , 1994 .
[21] W. Rump. Decomposition of Garside groups and self-similar L-algebras , 2017 .
[22] Richard J. Greechie,et al. On the structure of orthomodular lattices satisfying the chain condition , 1968 .
[23] S. Maclane,et al. Categories for the Working Mathematician , 1971 .
[24] W. Rump. L-algebras, self-similarity, and l-groups , 2008 .
[25] Bruno Bosbach. Rechtskomplementäre Halbgruppen. Axiome, Polynome, Kongruenzen , 1972 .
[26] A. Dvurecenskij. Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.
[27] David J. Foulis,et al. Logical Connectives on Lattice Effect Algebras , 2012, Stud Logica.
[28] W. Rump. The L-algebra of Hurwitz primes , 2018, Journal of Number Theory.
[29] Patrick Dehornoy,et al. Groups with a complemented presentation , 1997 .
[30] Wolfgang Rump,et al. A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .
[31] Robert Piziak,et al. Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..
[32] Wolfgang Rump,et al. Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation , 2015 .
[33] C. Chang,et al. A new proof of the completeness of the Łukasiewicz axioms , 1959 .
[34] Anatolij Dvurecenskij,et al. Algebras in the Positive Cone of po-Groups , 2002, Order.
[35] Alexander Wilce,et al. Perspectivity and congruence in partial abelian semigroups , 1998 .
[36] Sylvia Pulmannová,et al. New trends in quantum structures , 2000 .
[37] S. Pulmannová,et al. Generalized difference posets and orthoalgebras. , 1996 .
[38] Wolfgang Rump,et al. Von Neumann algebras, L-algebras, Baer *-monoids, and Garside groups , 2018, Forum Mathematicum.
[39] Patrick Dehornoy. Groupes de Garside , 2001 .
[40] P. Deligne,et al. Les immeubles des groupes de tresses généralisés , 1972 .
[41] Stanley Gudder,et al. S-Dominating Effect Algebras , 1998 .
[42] Mirko Navara. An orthomodular lattice admitting no group-valued measure , 1994 .
[43] Frantisek Kopka. Compatibility in D-posets , 1995 .
[44] W. Rump,et al. One-sided orthogonality, orthomodular spaces, quantum sets, and a class of Garside groups , 2019, Journal of Algebra.
[45] Roberto Giuntini,et al. Toward a formal language for unsharp properties , 1989 .
[46] G. Kalmbach,et al. AN AXIOMATIZATION FOR ABELIAN RELATIVE INVERSES , 1994 .
[47] David J. Foulis,et al. Effects, Observables, States, and Symmetries in Physics , 2007 .
[48] V. Lebed,et al. Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation , 2015, 1509.07067.
[49] Egbert Brieskorn,et al. Artin-Gruppen und Coxeter-Gruppen , 1972 .
[50] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[51] J. Neumann,et al. The Logic of Quantum Mechanics , 1936 .