Delamination area quantification in composite structures using Gaussian process regression and auto-regressive models

After detecting initial delamination damage in a hotspot region of a composite structure monitored through a data-driven approach, the user needs to decide if there is an imminent structural failur...

[1]  Charles R. Farrar,et al.  Use of Time-Series Predictive Models for Piezoelectric Active-Sensing in Structural Health Monitoring Applications , 2012 .

[2]  Dmitri Tcherniak,et al.  Gaussian process models for mitigation of operational variability in the structural health monitoring of wind turbines , 2020 .

[3]  S. Salamone,et al.  Temperature effects in ultrasonic Lamb wave structural health monitoring systems. , 2008, The Journal of the Acoustical Society of America.

[4]  Neil D. Lawrence,et al.  Latent Autoregressive Gaussian Processes Models for Robust System Identification , 2016 .

[5]  Z. Su,et al.  Identification of Damage Using Lamb Waves , 2009 .

[6]  Samuel da Silva,et al.  Data-driven model identification of guided wave propagation in composite structures , 2018 .

[7]  M. Rébillat,et al.  Generation of controlled delaminations in composites using symmetrical laser shock configuration , 2017 .

[8]  Kai Goebel,et al.  A Bayesian framework for fatigue life prediction of composite laminates under co-existing matrix cracks and delamination , 2018 .

[9]  S. Salamone,et al.  Guided-wave Health Monitoring of Aircraft Composite Panels under Changing Temperature , 2009 .

[10]  K. Balasubramaniam,et al.  Interaction of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: numerical and experimental studies , 2009 .

[11]  N. Toyama,et al.  Quantitative damage detection in cross-ply laminates using Lamb wave method , 2003 .

[12]  Charles R. Farrar,et al.  Influence of the Autoregressive Model Order on Damage Detection , 2011, Comput. Aided Civ. Infrastructure Eng..

[13]  Cara A. C. Leckey,et al.  Delamination detection and quantification on laminated composite structures with Lamb waves and wavenumber analysis , 2015 .

[14]  Kai Goebel,et al.  An investigation of strain energy release rate models for real-time prognosis of fiber-reinforced laminates , 2017 .

[15]  Eloi Figueiredo,et al.  Damage Quantification in Composite Structures Using Autoregressive Models , 2019, Lecture Notes in Mechanical Engineering.

[16]  S. Yuan,et al.  A PZT Based On-Line Updated Guided Wave - Gaussian Process Method for Crack Evaluation , 2020, IEEE Sensors Journal.

[17]  M. Rébillat,et al.  Extrapolation of AR models using cubic splines for damage progression evaluation in composite structures , 2020, Journal of Intelligent Material Systems and Structures.

[18]  Jian Chen,et al.  On-line updating Gaussian process measurement model for crack prognosis using the particle filter , 2020 .

[19]  Mira Mitra,et al.  Guided wave based structural health monitoring: A review , 2016 .

[20]  Fotis Kopsaftopoulos,et al.  Probabilistic Damage Quantification via the Integration of Non- parametric Time-Series and Gaussian Process Regression Models , 2019 .

[21]  Charles R. Farrar,et al.  Use of Relative Baseline Features of Guided Waves for In situ Structural Health Monitoring , 2011 .

[22]  Cecilia C. Larrosa,et al.  In situ damage classification for composite laminates using Gaussian discriminant analysis , 2014 .

[23]  Qian Wang,et al.  Rapid Multi-Damage Identification for Health Monitoring of Laminated Composites Using Piezoelectric Wafer Sensor Arrays , 2016, Sensors.

[24]  Marc Rébillat,et al.  Automatic damage type classification and severity quantification using signal based and nonlinear model based damage sensitive features , 2019, Journal of Process Control.