Which is the best dual-port SRAM in 45-nm process technology? — 8T, 10T single end, and 10T differential —
暂无分享,去创建一个
H. Fujiwara | M. Yoshimoto | H. Kawaguchi | Y. Morita | H. Noguchi | K. Nii | S. Okumura | Y. Iguchi | H. Kawaguchi | K. Nii | Y. Morita | H. Fujiwara | H. Noguchi | M. Yoshimoto | S. Okumura | Y. Iguchi
[1] T. Douseki,et al. A 0.5-V 25-MHz 1-mW 256-kb MTCMOS/SOI SRAM for solar-power-operated portable personal digital equipment - sure write operation by using step-down negatively overdriven bitline scheme , 2006, IEEE Journal of Solid-State Circuits.
[2] Mohamed A. Elgamel,et al. Dual sense amplified bit lines (DSABL) architecture for low-power SRAM design , 2005, 2005 IEEE International Symposium on Circuits and Systems.
[3] K. Ishibashi,et al. A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability With Read and Write Operation Stabilizing Circuits , 2007, IEEE Journal of Solid-State Circuits.
[4] Masahiko Yoshimoto,et al. A 10T Non-Precharge Two-Port SRAM for 74% Power Reduction in Video Processing , 2007, IEEE Computer Society Annual Symposium on VLSI (ISVLSI '07).
[5] Masahiko Yoshimoto,et al. A Low-Power Systolic Array Architecture for Block-Matching Motion Estimation , 2005, IEICE Trans. Electron..
[6] Atila Alvandpour,et al. A 130-nm 6-GHz 256 /spl times/ 32 bit leakage-tolerant register file , 2002 .
[7] A.P. Chandrakasan,et al. A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy , 2008, IEEE Journal of Solid-State Circuits.
[8] K. Soumyanath,et al. A 130-nm 6-GHz 256 × 32 bit leakage-tolerant register file , 2002, IEEE J. Solid State Circuits.
[9] Anna W. Topol,et al. Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..