Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals.

Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

[1]  André Anders,et al.  Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory , 2012 .

[2]  M. Filler,et al.  Influence of Dielectric Anisotropy on the Absorption Properties of Localized Surface Plasmon Resonances Embedded in Si Nanowires , 2014 .

[3]  P. Jain,et al.  Plasmonics with Doped Quantum Dots , 2012 .

[4]  P. Guyot-Sionnest,et al.  Reduced damping of surface plasmons at low temperatures , 2009 .

[5]  D. Milliron,et al.  Influence of Shape on the Surface Plasmon Resonance of Tungsten Bronze Nanocrystals , 2014 .

[6]  Liberato Manna,et al.  Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals , 2012 .

[7]  C. Granqvist,et al.  Indium tin oxide films made from nanoparticles: models for the optical and electrical properties , 2003 .

[8]  H. Kim,et al.  Colloidal Synthesis of Cubic-Phase Copper Selenide Nanodiscs and Their Optoelectronic Properties , 2010 .

[9]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[10]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[11]  I. Hamberg,et al.  Optical properties of sputter-deposited ZnO:Al thin films , 1988 .

[12]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[13]  Audrey Moores,et al.  The plasmon band in noble metal nanoparticles: an introduction to theory and applications , 2006 .

[14]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[15]  D. M. Smyth The effects of dopants on the properties of metal oxides , 2000 .

[16]  M. Sienko Electric and Magnetic Properties of the Tungsten and Vanadium Bronzes , 1963 .

[17]  G. Lanzani,et al.  Plasmon dynamics in colloidal Cu₂-xSe nanocrystals. , 2011, Nano letters.

[18]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[19]  Kenji Adachi,et al.  Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions , 2007 .

[20]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[21]  Masayuki Kanehara,et al.  Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. , 2009, Journal of the American Chemical Society.

[22]  Plasmonics in heavily-doped semiconductor nanocrystals , 2013, 1306.1077.

[23]  Niket Thakkar,et al.  Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. , 2014, ACS nano.

[24]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[25]  Horst Weller,et al.  Electrochromism of Highly Doped Nanocrystalline SnO2:Sb , 2000 .

[26]  A. Tao,et al.  Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. , 2011, Journal of the American Chemical Society.

[27]  G. Frank,et al.  Electrical properties and defect model of tin-doped indium oxide layers , 1982 .

[28]  D. Milliron,et al.  Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory , 2012 .

[29]  J. Quintana,et al.  Defect structure studies of bulk and nano-indium-tin oxide , 2004 .

[30]  James R Chelikowsky,et al.  Self-purification in semiconductor nanocrystals. , 2006, Physical review letters.

[31]  J. Garnett,et al.  Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II , 1906 .

[32]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[33]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[34]  Liberato Manna,et al.  New materials for tunable plasmonic colloidal nanocrystals. , 2014, Chemical Society reviews.

[35]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[36]  A Porch,et al.  Basic materials physics of transparent conducting oxides. , 2004, Dalton transactions.

[37]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[38]  Delia J. Milliron,et al.  Chemistry of Doped Colloidal Nanocrystals , 2013 .

[39]  G. Brunklaus,et al.  Tuning Plasmonic Properties by Alloying Copper into Gold Nanorods , 2009 .

[40]  Mino Green,et al.  Sodium-tungsten bronze thin films I. Optical properties of dilute bronzes. , 1985 .

[41]  H. Shanks,et al.  Optical properties of the sodium-tungsten bronzes and tungsten trioxide , 1978 .

[42]  Hui Zhang,et al.  Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances. , 2013, ACS nano.

[43]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[44]  D. Kammler,et al.  Point defects and electrical properties of Sn-doped In-based transparent conducting oxides , 2000 .

[45]  E. Gerlach REVIEW ARTICLE: Carrier scattering and transport in semiconductors treated by the energy-loss method , 1986 .

[46]  Vincenzo Grillo,et al.  Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. , 2008, Journal of the American Chemical Society.

[47]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[48]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[49]  C. Granqvist,et al.  Optical properties of transparent and heat‐reflecting indium tin oxide films: The role of ionized impurity scattering , 1984 .

[50]  Roberto Simonutti,et al.  Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption , 2013 .

[51]  Bruce T. Draine,et al.  Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains] , 1992 .

[52]  George C. Schatz,et al.  Plasmon resonance broadening in small metal particles , 1983 .

[53]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[54]  Z. Qiao,et al.  Dielectric modelling of optical spectra of thin In2O3 : Sn films , 2002 .

[55]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[56]  Bernd Rech,et al.  Optical modeling of free electron behavior in highly doped ZnO films , 2009 .

[57]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[58]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[59]  Xun Wang,et al.  MoO(3-x)-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. , 2012, Chemistry.

[60]  D. Altamura,et al.  Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. , 2013, ACS nano.

[61]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[62]  U. Kreibig,et al.  Dielectric function and plasma resonances of small metal particles , 1975 .

[63]  D. Milliron,et al.  Comparison of extra electrons in colloidal n-type Al(3+)-doped and photochemically reduced ZnO nanocrystals. , 2012, Chemical communications.

[64]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[65]  C. Summers,et al.  Synthesis of a Nonagglomerated Indium Tin Oxide Nanoparticle Dispersion , 2008 .

[66]  R. B. Tahar,et al.  Tin doped indium oxide thin films: Electrical properties , 1998 .

[67]  A. Boltasseva,et al.  Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). , 2013, Nano letters.

[68]  B. Park,et al.  Preparation and Optical Properties of Colloidal, Monodisperse, and Highly Crystalline ITO Nanoparticles , 2008 .