On the Relation between States and Maps in Infinite Dimensions

Relations between states and maps, which are known for quantum systems in finitedimensional Hilbert spaces, are formulated rigorously in geometrical terms with no use of coordinate (matrix) interpretation. In a tensor product realization they are represented simply by a permutation of factors. This leads to natural generalizations for infinite-dimensional Hilbert spaces and a simple proof of a generalized Choi Theorem. The natural framework is based on spaces of Hilbert-Schmidt operators $${\mathcal{L}}_2({\mathcal{H}}_2 , {\mathcal{H}}_1 )$$ and the corresponding tensor products $${\mathcal{H}}_1\otimes{\mathcal{H}}_2^*$$ of Hilbert spaces. It is proved that the corresponding isomorphisms cannot be naturally extended to compact (or bounded) operators, nor reduced to the trace-class operators. On the other hand, it is proven that there is a natural continuous map $${\mathcal{C}} : {\mathcal{L}}_1({\mathcal{L}}_2({\mathcal{H}}_2, {\mathcal{H}}_1)) \to {\mathcal{L}}_\infty({\mathcal{L}}({\mathcal{H}}_2), {\mathcal{L}}_1({\mathcal{H}}_1))$$ from trace-class operators on $${\mathcal{L}}_2 ({\mathcal{H}}_2, {\mathcal{H}}_1)$$ (with the nuclear norm) into compact operators mapping the space of all bounded operators on $${\mathcal{H}}_2$$ into trace class operators on $${\mathcal{H}}_1$$ (with the operator-norm). Also in the infinite-dimensional context, the Schmidt measure of entanglement and multipartite generalizations of state-maps relations are considered in the paper.

[1]  A. Jamiołkowski An effective method of investigation of positive maps on the set of positive definite operators , 1974 .

[2]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[3]  P. M. Mathews,et al.  STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .

[4]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[5]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[6]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[7]  Giuseppe Marmo,et al.  Symmetries, Group Actions, and Entanglement , 2006, Open Syst. Inf. Dyn..

[8]  Geometry of quantum systems: Density states and entanglement , 2005, math-ph/0507045.

[9]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[10]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[11]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[12]  R. Haag,et al.  Local quantum physics , 1992 .

[13]  Karol Zyczkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[14]  Neil Gershenfeld,et al.  Information In Dynamics , 1992, Workshop on Physics and Computation.

[15]  A. Majewski On entanglement of formation , 2002 .

[16]  Giuseppe Marmo,et al.  Relations Between Quantum Maps and Quantum States , 2005, Open Syst. Inf. Dyn..

[17]  Wacław Zawadowski,et al.  Methods of Hilbert spaces , 1972 .

[18]  Andrzej Jamiolkowski Errata: On a Stroboscopic Approach to Quantum Tomography of Qudits Governed by Gaussian Semigroups - Open Sys. Information Dyn. 11, 63 (2003) , 2004, Open Syst. Inf. Dyn..

[19]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[20]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[21]  D. Salgado,et al.  A Simple Proof of the Jamiołkowski Criterion for Complete Positivity of Linear Maps , 2005, Open Syst. Inf. Dyn..

[22]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[23]  Wladyslaw A. Majewski On Positive Maps, Entanglement and Quantization , 2004, Open Syst. Inf. Dyn..

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  I. Segal Postulates for General Quantum Mechanics , 1947 .

[27]  G. Marmo,et al.  Geometrization of quantum mechanics , 2007, math-ph/0701053.

[28]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .