Practical space shift keying VLC system

This paper presents results of a practical implementation of a spatial shift keying (SSK) visible light communication (VLC) system. This is the first practical proof-of-concept realtime implementation of SSK for VLC to the best knowledge of the authors. The system uses four transmitter light emitting diodes (LEDs) to encode information, and four receiver photo diodes (PDs) to decode the spatial signatures and decode the incoming data signal. The achieved bit error ratio (BER) of less than 2 × 10-3 allows for error-free communication if forward error correction (FEC) is to be applied. The main challenge with practical implementations of SSK in VLC is identified, namely maintaining symbol separation in the received constellation, and solutions are proposed.

[1]  Roel Baets,et al.  Resonant-cavity light-emitting diodes: a review , 2003, SPIE OPTO.

[2]  M. Brandt-Pearce,et al.  Optimizing system performance of free-space optical MIMO links with APD receivers , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[3]  Chang Wook Ahn,et al.  Spatial Modulation - A New Low Complexity Spectral Efficiency Enhancing Technique , 2006, 2006 First International Conference on Communications and Networking in China.

[4]  Harald Haas,et al.  Spatial Modulation , 2008, IEEE Transactions on Vehicular Technology.

[5]  Dominic C. O'Brien,et al.  High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting , 2009, IEEE Journal on Selected Areas in Communications.

[6]  On the performance of Space Shift Keying MIMO systems over correlated Rician fading channels , 2010, 2010 International ITG Workshop on Smart Antennas (WSA).

[7]  Harald Haas,et al.  A General Framework for Performance Analysis of Space Shift Keying (SSK) Modulation for MISO Correlated Nakagami-m Fading Channels , 2010, IEEE Transactions on Communications.

[8]  Harald Haas,et al.  On the performance of Space Shift Keying for optical wireless communications , 2010, 2010 IEEE Globecom Workshops.

[9]  Harald Haas,et al.  Optical Spatial Modulation , 2011, IEEE/OSA Journal of Optical Communications and Networking.

[10]  G. Cossu,et al.  1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation , 2012, IEEE Photonics Journal.

[11]  H. Haas,et al.  Spatial Pulse Position Modulation for Optical Communications , 2012, Journal of Lightwave Technology.

[12]  M. Dawson,et al.  Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array , 2012, Journal of Lightwave Technology.

[13]  J. Bowers,et al.  GaN-Based Miniaturized Cyan Light-Emitting Diodes on a Patterned Sapphire Substrate With Improved Fiber Coupling for Very High-Speed Plastic Optical Fiber Communication , 2012, IEEE Photonics Journal.

[14]  D. O'Brien,et al.  A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications , 2013, IEEE Photonics Technology Letters.

[15]  Harald Haas,et al.  Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments , 2013, IEEE Transactions on Communications.

[16]  Harald Haas,et al.  Optical spatial modulation using colour LEDs , 2013, 2013 IEEE International Conference on Communications (ICC).

[17]  Sien Chi,et al.  Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication , 2013, IEEE Photonics Journal.

[18]  S. Sinanovic,et al.  Complete Modeling of Nonlinear Distortion in OFDM-Based Optical Wireless Communication , 2013, Journal of Lightwave Technology.

[19]  H. Haas,et al.  A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.