Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis.

[1]  V. Préat,et al.  Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[2]  J. Schulzke,et al.  Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[3]  David J Brayden,et al.  Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. , 2013, International journal of pharmaceutics.

[4]  D. Peer Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. , 2012, Advanced drug delivery reviews.

[5]  Toru Yoshitomi,et al.  An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. , 2012, Gastroenterology.

[6]  C. Lehr,et al.  Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[7]  Dan Peer,et al.  Altering the immune response with lipid-based nanoparticles. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[8]  A. Neyrinck,et al.  Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages. , 2012, Biochemical and biophysical research communications.

[9]  G. Giammona,et al.  Lipid nanoparticles as delivery vehicles for the Parietaria judaica major allergen Par j 2 , 2011, International journal of nanomedicine.

[10]  R. Xavier,et al.  Genetics and pathogenesis of inflammatory bowel disease , 2011, Nature.

[11]  Patrice D Cani,et al.  Increasing endogenous 2‐arachidonoylglycerol levels counteracts colitis and related systemic inflammation , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  C. Lees,et al.  Guidelines for the management of inflammatory bowel disease in adults , 2011, Gut.

[13]  Didier Merlin,et al.  Nanomedicine in GI. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[14]  J. Leor,et al.  Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair , 2011, Proceedings of the National Academy of Sciences.

[15]  M. Eandi,et al.  Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[16]  G. Dalmasso,et al.  Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. , 2010, Gastroenterology.

[17]  A. Lamprecht,et al.  Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases , 2010, Journal of The Royal Society Interface.

[18]  G. Dalmasso,et al.  Temporal and Spatial Analysis of Clinical and Molecular Parameters in Dextran Sodium Sulfate Induced Colitis , 2009, PloS one.

[19]  M. Abreu,et al.  Biological markers in inflammatory bowel disease: practical consideration for clinicians. , 2009, Gastroenterologie clinique et biologique.

[20]  H. Takeuchi,et al.  pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[21]  M. Neurath,et al.  Mouse models of inflammatory bowel disease. , 2007, Advanced drug delivery reviews.

[22]  S. Carding,et al.  Inflammatory bowel disease: cause and immunobiology , 2007, The Lancet.

[23]  W. Sandborn,et al.  Inflammatory bowel disease: clinical aspects and established and evolving therapies , 2007, The Lancet.

[24]  R. Cavalli,et al.  Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells , 2006, British journal of pharmacology.

[25]  R. Sartor Mechanisms of Disease: pathogenesis of Crohn's disease and ulcerative colitis , 2006, Nature Clinical Practice Gastroenterology &Hepatology.

[26]  H. N. Bhargava,et al.  Development and validation of a high-performance liquid chromatographic method for the analysis of budesonide. , 2006, Journal of pharmaceutical and biomedical analysis.

[27]  W. Sandborn,et al.  Budesonide in the treatment of inflammatory bowel disease: The first year of experience in clinical practice , 2006, Inflammatory bowel diseases.

[28]  Y. Barenholz,et al.  Local treatment of experimental colitis in the rat by negatively charged liposomes of catalase, TMN and SOD , 2006, Journal of drug targeting.

[29]  Agneta Karlsson,et al.  Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[30]  Y. Kawashima,et al.  A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[31]  U. Klotz,et al.  Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. , 2005, Advanced drug delivery reviews.

[32]  D. Friend New oral delivery systems for treatment of inflammatory bowel disease. , 2005, Advanced drug delivery reviews.

[33]  Jean-Pierre Benoit,et al.  Physico-chemical stability of colloidal lipid particles. , 2003, Biomaterials.

[34]  G. Lichtenstein,et al.  Corticosteroids in Crohn’s disease , 2002, American Journal of Gastroenterology.

[35]  R. Korpela,et al.  Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats. , 2001, European journal of pharmacology.

[36]  Claus-Michael Lehr,et al.  Size-Dependent Bioadhesion of Micro- and Nanoparticulate Carriers to the Inflamed Colonic Mucosa , 2001, Pharmaceutical Research.

[37]  A. Öst,et al.  A reproducible grading scale for histological assessment of inflammation in ulcerative colitis , 2000, Gut.

[38]  A. Zarzuelo,et al.  Intestinal anti‐inflammatory activity of UR‐12746, a novel 5‐ASA conjugate, on acute and chronic experimental colitis in the rat , 2000, British journal of pharmacology.

[39]  R. Müller,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[40]  R. Müller,et al.  Spray-drying of solid lipid nanoparticles (SLN TM). , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[41]  D. Jewell,et al.  Budesonide prolongs time to relapse in ileal and ileocaecal Crohn's disease. A placebo controlled one year study. , 1996, Gut.

[42]  W. Stenson,et al.  Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: Assessment of inflammation in rat and hamster models , 1984 .

[43]  D. Merlin,et al.  Gastrointestinal delivery of anti-inflammatory nanoparticles. , 2012, Methods in enzymology.

[44]  M. K. Chourasia,et al.  Pharmaceutical approaches to colon targeted drug delivery systems. , 2003, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[45]  Genome-wide identification and characterization of transcripts translationally regulated by bacterial lipopolysaccharide in macrophage-like J774.1 cells , 2022 .