Sensory neural codes using multiplexed temporal scales

Determining how neuronal activity represents sensory information is central for understanding perception. Recent work shows that neural responses at different timescales can encode different stimulus attributes, resulting in a temporal multiplexing of sensory information. Multiplexing increases the encoding capacity of neural responses, enables disambiguation of stimuli that cannot be discriminated at a single response timescale, and makes sensory representations stable to the presence of variability in the sensory world. Thus, as we discuss here, temporal multiplexing could be a key strategy used by the brain to form an information-rich and stable representation of the environment.

[1]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[2]  Christoph Kayser,et al.  Temporal Correlations of Orientations in Natural Scenes , 2002, Neurocomputing.

[3]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[4]  M. Kilgard,et al.  Cortical activity patterns predict speech discrimination ability , 2008, Nature Neuroscience.

[5]  Adrienne L. Fairhall,et al.  Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons , 2009, Journal of Computational Neuroscience.

[6]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[7]  Xiao-Jing Wang,et al.  Bursting Neurons Signal Input Slope , 2002, The Journal of Neuroscience.

[8]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[9]  Idan Segev,et al.  Optimization principles of dendritic structure , 2007, Theoretical Biology and Medical Modelling.

[10]  Ariel Rokem,et al.  Burst Firing is a Neural Code in an Insect Auditory System , 2008, Frontiers Comput. Neurosci..

[11]  Gal Chechik,et al.  Reduction of Information Redundancy in the Ascending Auditory Pathway , 2006, Neuron.

[12]  T. Bullock,et al.  Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Chun-I Yeh,et al.  Temporal precision in the neural code and the timescales of natural vision , 2007, Nature.

[14]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[15]  Arthur Gretton,et al.  Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information , 2008, The Journal of Neuroscience.

[16]  T. Sejnowski,et al.  Information transfer in entrained cortical neurons. , 2002, Network.

[17]  C. Stevens,et al.  Neural Coding: The enigma of the brain , 1995, Current Biology.

[18]  Christoph Kayser,et al.  Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials , 2004, The European journal of neuroscience.

[19]  N. Logothetis,et al.  Neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging , 2004 .

[20]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[21]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[22]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[23]  R. Romo,et al.  Neural codes for perceptual discrimination in primary somatosensory cortex , 2005, Nature Neuroscience.

[24]  Nicolas Brunel,et al.  Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons , 2008, PLoS Comput. Biol..

[25]  Gal Chechik,et al.  Information theory in auditory research , 2007, Hearing Research.

[26]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[27]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[29]  A. Puce,et al.  Neuronal oscillations and visual amplification of speech , 2008, Trends in Cognitive Sciences.

[30]  Zoltan Nadasdy,et al.  Information Encoding and Reconstruction from the Phase of Action Potentials , 2009, Front. Syst. Neurosci..

[31]  Anthony M. Zador,et al.  Millisecond-scale differences in neural activity in auditory cortex can drive decisions , 2008 .

[32]  J. Lisman,et al.  Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. , 2000, Journal of neurophysiology.

[33]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[34]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[35]  K. Mathewson,et al.  To See or Not to See: Prestimulus α Phase Predicts Visual Awareness , 2009, The Journal of Neuroscience.

[36]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[37]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[38]  H. Sompolinsky,et al.  The tempotron: a neuron that learns spike timing–based decisions , 2006, Nature Neuroscience.

[39]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[40]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[41]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[42]  Emilio Salinas,et al.  Cognitive neuroscience: Flutter Discrimination: neural codes, perception, memory and decision making , 2003, Nature Reviews Neuroscience.

[43]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[44]  M. Diamond,et al.  Deciphering the Spike Train of a Sensory Neuron: Counts and Temporal Patterns in the Rat Whisker Pathway , 2006, The Journal of Neuroscience.

[45]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[46]  F. Mechler,et al.  Interspike Intervals, Receptive Fields, and Information Encoding in Primary Visual Cortex , 2000, The Journal of Neuroscience.

[47]  D. Poeppel,et al.  Phase Patterns of Neuronal Responses Reliably Discriminate Speech in Human Auditory Cortex , 2007, Neuron.

[48]  D Ferster,et al.  Cracking the Neuronal Code , 1995, Science.

[49]  Eric D Young,et al.  First-spike latency information in single neurons increases when referenced to population onset , 2007, Proceedings of the National Academy of Sciences.

[50]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[51]  P. Latham,et al.  Ruling out and ruling in neural codes , 2009, Proceedings of the National Academy of Sciences.

[52]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[53]  Sir Charles Sherrington THE BRAIN AND ITS MECHANISM , 1934 .

[54]  J. Victor,et al.  Quality Time: Representation of a Multidimensional Sensory Domain through Temporal Coding , 2009, The Journal of Neuroscience.

[55]  J. Lisman The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme , 2005, Hippocampus.

[56]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[57]  Arthur R. Houweling,et al.  Behavioural report of single neuron stimulation in somatosensory cortex , 2008, Nature.

[58]  Asaf Keller,et al.  Robust Temporal Coding in the Trigeminal System , 2004, Science.

[59]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[60]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[61]  John P. Miller,et al.  Temporal encoding in nervous systems: A rigorous definition , 1995, Journal of Computational Neuroscience.

[62]  C. Schroeder,et al.  The Leading Sense: Supramodal Control of Neurophysiological Context by Attention , 2009, Neuron.

[63]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[64]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[66]  S. Panzeri,et al.  Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. , 2007, Journal of neurophysiology.

[67]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[68]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[69]  J. Csicsvari,et al.  Theta phase–specific codes for two-dimensional position, trajectory and heading in the hippocampus , 2008, Nature Neuroscience.

[70]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[71]  Carlos D. Brody,et al.  Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing , 2003, Neuron.

[72]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[73]  Matteo Carandini,et al.  Coding of stimulus sequences by population responses in visual cortex , 2009, Nature Neuroscience.

[74]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[75]  Jan W. H. Schnupp,et al.  Plasticity of Temporal Pattern Codes for Vocalization Stimuli in Primary Auditory Cortex , 2006, The Journal of Neuroscience.

[76]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[77]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[78]  A. Fairhall,et al.  Timescales of Inference in Visual Adaptation , 2009, Neuron.

[79]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[80]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[81]  Per Magne Knutsen,et al.  Orthogonal coding of object location , 2009, Trends in Neurosciences.

[82]  W. Kristan,et al.  Population coding and behavioral choice , 1997, Current Opinion in Neurobiology.

[83]  A. Fairhall,et al.  Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex , 2007, PLoS biology.

[84]  Jonathan D. Victor,et al.  How the brain uses time to represent and process visual information 1 1 Published on the World Wide Web on 16 August 2000. , 2000, Brain Research.

[85]  R. VanRullen,et al.  The Phase of Ongoing EEG Oscillations Predicts Visual Perception , 2009, The Journal of Neuroscience.

[86]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[87]  Adrienne L Fairhall,et al.  Decoding Stimulus Variance from a Distributional Neural Code of Interspike Intervals , 2006, The Journal of Neuroscience.