New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

[1]  Hylke de Vries,et al.  A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss , 2017 .

[2]  G. Heuvelink,et al.  Incorporating DEM Uncertainty in Coastal Inundation Mapping , 2014, PloS one.

[3]  Roger M. Cooke,et al.  Ice sheet contributions to future sea-level rise from structured expert judgment , 2019, Proceedings of the National Academy of Sciences.

[4]  J. Aerts,et al.  Global exposure to river and coastal flooding - long term trends and changes , 2012 .

[5]  R. C. Macridis A review , 1963 .

[6]  Andrew J. Tatem,et al.  WorldPop, open data for spatial demography , 2017, Scientific Data.

[7]  Deborah Balk,et al.  The Distribution of People and the Dimension of Place: Methodologies to Improve the Global Estimation of Urban Extents , 2004 .

[8]  Ashton Shortridge,et al.  Spatial structure and landscape associations of SRTM error , 2011 .

[9]  R. Nicholls,et al.  Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis , 2017, Natural Hazards and Earth System Sciences.

[10]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[11]  A. Cazenave,et al.  Sea-level rise by 2100. , 2013, Science.

[12]  Charles H. Fletcher,et al.  Sea-level rise vulnerability mapping for adaptation decisions using LiDAR DEMs , 2013 .

[13]  R. Kopp,et al.  Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries , 2017, 1710.08297.

[14]  Philip B. Holden,et al.  Revisiting Antarctic ice loss due to marine ice-cliff instability , 2018, Nature.

[15]  Scott Kulp,et al.  CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network , 2018 .

[16]  K. Ahrendt,et al.  Comparing the “Bathtub Method” with MIKE 21 HD Flow Model for Modelling Storm Surge Indundation : Case Study Kiel Fjord , 2013 .

[17]  W. Landman Climate change 2007: the physical science basis , 2010 .

[18]  M. Verlaan,et al.  A global reanalysis of storm surges and extreme sea levels , 2016, Nature Communications.

[19]  S. Jevrejeva,et al.  A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios , 2016 .

[20]  Matthew Wilson,et al.  Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? , 2016 .

[21]  Jan Corfee-Morlot,et al.  Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen , 2011 .

[22]  Mathew E. Hauer,et al.  Migration induced by sea-level rise could reshape the US population landscape , 2017 .

[23]  S. Kanae,et al.  A high‐accuracy map of global terrain elevations , 2017 .

[24]  M. Lorraine Tighe,et al.  ACCURACY COMPARISON OF THE SRTM, ASTER, NED, NEXTMAP® USA DIGITAL TERRAIN MODEL OVER SEVERAL USA STUDY SITES , 2009 .

[25]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[26]  R. Nicholls,et al.  Exploring Data-Related Uncertainties in Analyses of Land Area and Population in the “Low-Elevation Coastal Zone” (LECZ) , 2010 .

[27]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[28]  X. Fettweis,et al.  Coastal flood damage and adaptation costs under 21st century sea-level rise , 2014, Proceedings of the National Academy of Sciences.

[29]  K. Desmet,et al.  Evaluating the Economic Cost of Coastal Flooding , 2018, American Economic Journal: Macroeconomics.

[30]  Richard H. Day,et al.  The Impact of Lidar Elevation Uncertainty on Mapping Intertidal Habitats on Barrier Islands , 2017, Remote. Sens..

[31]  J. Agyeman,et al.  Case Study: Copenhagen , 2016 .

[32]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[33]  M. Meinshausen,et al.  Synthesizing long-term sea level rise projections-the MAGICC sea level model v2.0 , 2016 .

[34]  Aslak Grinsted,et al.  Sea level projections to AD2500 with a new generation of climate change scenarios , 2012 .

[35]  R. Kopp,et al.  Probabilistic reanalysis of twentieth-century sea-level rise , 2015, Nature.

[36]  R. DeConto,et al.  Contribution of Antarctica to past and future sea-level rise , 2016, Nature.

[37]  Takeo Tadono,et al.  Generation of the 30 M-MESH global digital surface model by alos prism , 2016 .

[38]  C. Tebaldi,et al.  Modelling sea level rise impacts on storm surges along US coasts , 2012 .

[39]  C. Tebaldi,et al.  Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites , 2014 .

[40]  T. Wigley,et al.  Synthesizing long-term sea level rise projections - the MAGICC sea level model v2.0 , 2016 .

[41]  Deepak Mishra,et al.  Millions projected to be at risk from sea-level rise in the continental United States , 2016 .

[42]  Rafael Reuveny Climate change-induced migration and violent conflict , 2007 .

[43]  Joseph P. Messina,et al.  The Influence of Land Cover on Shuttle Radar Topography Mission (SRTM) Elevations in Low‐relief Areas , 2010, Trans. GIS.

[44]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[45]  Ralf Ludwig,et al.  Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling , 2006 .

[46]  Klaus Keller,et al.  Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet , 2017, Scientific Reports.

[47]  R. Kopp,et al.  Evolving Understanding of Antarctic Ice‐Sheet Physics and Ambiguity in Probabilistic Sea‐Level Projections , 2017, 1704.05597.

[48]  David A. Hastings,et al.  Global Land One-kilometer Base Elevation (GLOBE) , 1993 .

[49]  B. Anderson,et al.  The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones , 2007 .

[50]  Kazimierz Becek,et al.  Assessing Global Digital Elevation Models Using the Runway Method: The Advanced Spaceborne Thermal Emission and Reflection Radiometer Versus the Shuttle Radar Topography Mission Case , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[51]  S. Kulp,et al.  Global DEM Errors Underpredict Coastal Vulnerability to Sea Level Rise and Flooding , 2016, Front. Earth Sci..

[52]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[53]  Klaus Keller,et al.  Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense , 2016, Climatic Change.

[54]  Kytt MacManus,et al.  Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4 , 2015 .

[55]  S. Wechsler Uncertainties associated with digital elevation models for hydrologic applications: a review , 2006 .

[56]  Takeo Tadono,et al.  GENERATION OF THE 30 M-MESH GLOBAL DIGITAL SURFACE MODEL , 2016 .

[57]  P. Gamba,et al.  SRTM data Characterization in urban areas , 2012 .

[58]  Joeri Rogelj,et al.  Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways , 2017 .

[59]  S. Wechsler,et al.  Quantifying DEM Uncertainty and its Effect on Topographic Parameters , 2006 .

[60]  R. Nicholls,et al.  Future flood losses in major coastal cities , 2013 .

[61]  Dean B. Gesch,et al.  Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure , 2018, Front. Earth Sci..

[62]  R. Nicholls,et al.  Water-level attenuation in global-scale assessments of exposure to coastal flooding : a sensitivity analysis , 2018 .

[63]  Robert E. Kopp,et al.  Allowances for evolving coastal flood risk under uncertain local sea-level rise , 2015, Climatic Change.

[64]  C. Conrad,et al.  Reassessment of 20th century global mean sea level rise , 2017, Proceedings of the National Academy of Sciences.

[65]  R. Nicholls,et al.  Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment , 2015, PloS one.