Brazing of super-hard AlMgB14–TiB2 ceramic to 304 stainless steel with AgCuTi filler alloy

[1]  Z. W. Yang,et al.  Microstructural evolution and mechanical properties of TiB2-TiC-SiC ceramics joint brazed using Ti-Ni composite foils , 2020 .

[2]  J. Qi,et al.  Brazing ZTA ceramic to TC4 alloy using the Cu foam as interlayer , 2018, Vacuum.

[3]  Xiaoguo Song,et al.  Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler , 2018, Materials Characterization.

[4]  L. X. Zhang,et al.  Microstructure and mechanical properties of transparent alumina and TiAl alloy joints brazed using Ag-Cu-Ti filler metal , 2018 .

[5]  Q. Ma,et al.  Brazing SiO2f/SiO2 with TC4 alloy with the help of coating graphene , 2017 .

[6]  Xiaoguo Song,et al.  Vacuum brazing of Cf/β–spodumene composites and Ti–6Al–4 V alloy using Ag–Cu filler metal , 2017 .

[7]  L. X. Zhang,et al.  Active metal brazing of SiO2–BN ceramic and Ti plate with Ag–Cu–Ti + BN composite filler , 2017 .

[8]  J. Qi,et al.  Graphene-enhanced Cu composite interlayer for contact reaction brazing aluminum alloy 6061 , 2017 .

[9]  V. Ivashchenko,et al.  Characterization of Al-Mg-B-C films based on experimental and first-principles investigations , 2017 .

[10]  P. Blau,et al.  Friction behavior of a multi-interface system and improved performance by AlMgB14–TiB2–C and diamond-like-carbon coatings , 2016 .

[11]  Ying Wang,et al.  Microstructure and mechanical properties of Al2O3 ceramic and Ti6Al4V alloy joint brazed with inactive Ag–Cu and Ag–Cu + B , 2016 .

[12]  K. Knowles,et al.  Interfacial reactions between sapphire and Ag-Cu-Ti-based active braze alloys , 2016 .

[13]  Y. Lei,et al.  Oxidation behavior of AlMgB 14 -TiB 2 composite at elevated temperature , 2015 .

[14]  Y. Lei,et al.  Microstructure and mechanical properties of AlMgB14–TiB2 associated with metals prepared by the field-assisted diffusion bonding sintering process , 2015 .

[15]  Y. Lei,et al.  Friction and Wear Behavior of AlMgB14–TiB2 Composite at Elevated Temperature , 2014, Tribology Letters.

[16]  D. Fan Study on Thermal Physical Properties of 304 Stainless Steel at High Temperature , 2014 .

[17]  J. Brillo,et al.  Anisotropy in wetting of oriented sapphire surfaces by liquid Al–Cu alloys , 2014, Journal of Materials Science.

[18]  H. S. Liu,et al.  Experimental study and thermodynamic assessment of the Cu–Fe–Ti system , 2013 .

[19]  D. Jia,et al.  Diffusion bonding of ZrB2–SiC/Nb with in situ synthesized TiB whiskers array , 2012 .

[20]  L. X. Zhang,et al.  Correlation between microstructure and mechanical properties of active brazed Invar/SiO2–BN joints , 2012 .

[21]  Yanming He,et al.  Microstructure and mechanical properties of the Si3N4/42CrMo steel joints brazed with Ag–Cu–Ti + Mo composite filler , 2010 .

[22]  V. S. Zhuravlev,et al.  Liquid metal wettability and advanced ceramic brazing , 2008 .

[23]  Hao Wang,et al.  In situ TiB-reinforced Cu-based bulk metallic glass composites , 2006 .

[24]  S. Bahadur,et al.  Mechanical properties and scratch test studies of new ultra-hard AlMgB14 modified by TiB2 , 2006 .

[25]  S. Bahadur,et al.  Abrasion of Engineering Ceramics, AiMgB14-TiB2 Composite and other Hard Materials , 2006 .

[26]  A. Russell,et al.  Superhard self-lubricating AlMgB14 films for microelectromechanical devices , 2003 .

[27]  K. B. Panda,et al.  Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties , 2003 .

[28]  B. Cook,et al.  Coefficient of thermal expansion of AlMgB14 , 2002 .

[29]  Thomas W. Eagar,et al.  Strain energy distribution in ceramic-to-metal joints , 2002 .

[30]  S. Gorsse,et al.  In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique , 1998 .