A fuzzy approach to option pricing in a Levy process setting

Abstract In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis and the theory of fuzzy sets.We assume that some parameters of the financial instrument cannot be precisely described and therefore they are introduced to the model as fuzzy numbers. Application of fuzzy arithmetic enables us to consider various sources of uncertainty, not only the stochastic one. To obtain the European call option pricing formula we use the minimal entropy martingale measure and Levy characteristics.

[1]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[2]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[3]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[4]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[5]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[6]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[7]  Lotfi A. Zadeh,et al.  Please Scroll down for Article International Journal of General Systems Fuzzy Sets and Systems* Fuzzy Sets and Systems* , 2022 .

[8]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[9]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[10]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[11]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[12]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[13]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[14]  Robert J. Elliott,et al.  Mathematics of Financial Markets , 1999 .

[15]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[16]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[17]  Mark H. A. Davis Mathematics of Financial Markets , 2001 .

[18]  Changjiu Zhou,et al.  Fuzzy-arithmetic-based Lyapunov synthesis in the design of stable fuzzy controllers: A computing-with-words approach , 2002 .

[19]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[20]  Yoshio Miyahara,et al.  The minimal entropy martingale measures for geometric Lévy processes , 2003, Finance Stochastics.

[21]  Yuji Yoshida,et al.  The valuation of European options in uncertain environment , 2003, Eur. J. Oper. Res..

[22]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[23]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[24]  Yoshio Miyahara,et al.  A Note on Esscher Transformed Martingale Measures for Geometric Lévy Processes , 2004 .

[25]  Hsien-Chung Wu,et al.  Pricing European options based on the fuzzy pattern of Black-Scholes formula , 2004, Comput. Oper. Res..

[26]  Hsien-Chung Wu,et al.  Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options , 2007, Appl. Math. Comput..

[27]  Maciej Romaniuk,et al.  Computing option price for Levy process with fuzzy parameters , 2010, Eur. J. Oper. Res..

[28]  Cyrus Seera Ssebugenyi,et al.  Using the Minimal Entropy Martingale Measure to Valuate Real Options in Multinomial Lattices , 2011 .

[29]  Hongyi Li,et al.  Foreign equity option pricing under stochastic volatility model with double jumps , 2011 .

[30]  Chunshien Li,et al.  Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence , 2012, Int. J. Appl. Math. Comput. Sci..

[31]  Wei-guo Zhang,et al.  The double exponential jump diffusion model for pricing European options under fuzzy environments , 2012 .