On Hybrid Censored Inverse Lomax Distribution: Application to the Survival Data

In this paper, we proposed the estimation procedures to estimate the unknown parameters, reliability and hazard functions of Inverse Lomax distribution. The mathematical expressions for maximum likelihood and Bayes estimators are derived in presence of hybrid censoring scheme. In most of the cases, it has been seen that maximum likelihood and Bayes estimators of the parameters are not appear in explicit form. Hence, Newton-Raphson (N-R) method has been used to draw the maximum likelihood estimates of the parameters. The Bayes estimators are obtained under Jeffrey's non-informative prior for both shape  and scale using Markov Chain Monte Carlo (MCMC) technique. Further, we have also constructed the 95% asymptotic confidence interval based on maximum likelihood estimates (MLEs) and highest posterior density (HPD) credible intervals based on MCMC samples. Finally, two data sets have been used to demonstrate the proposed methodology.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Elisa Lee,et al.  Statistical Methods for Survival Data Analysis: Lee/Survival Data Analysis , 2003 .

[3]  U. Singh,et al.  Bayesian estimation of Lomax distribution under type-II hybrid censored data using Lindley's approximation method , 2017 .

[4]  Christian Kleiber,et al.  Lorenz ordering of order statistics from log-logistic and related distributions , 2002 .

[5]  Debasis Kundu,et al.  Parameter estimation of the hybrid censored log-normal distribution , 2011 .

[6]  Irwin Guttman,et al.  Bayesian analysis of hybrid life tests with exponential failure times , 1987 .

[7]  Debasis Kundu,et al.  Hybrid censoring schemes with exponential failure distribution , 1998 .

[8]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[9]  G. K. Bhattacharyya,et al.  Exact confidence bounds for an exponential parameter under hybrid censoring , 1987 .

[10]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[11]  R. Dykstra,et al.  A Confidence Interval for an Exponential Parameter from a Hybrid Life Test , 1982 .

[12]  Nader Ebrahimi Estimating the parameters of an exponential distribution from a hybrid life test , 1986 .

[13]  Debasis Kundu,et al.  Estimating the Parameters of the Generalized Exponential Distribution in Presence of Hybrid Censoring , 2009 .

[14]  EQUIVARIANT ESTIMATION FOR PARAMETERS OF EXPONENTIAL DISTRIBUTIONS BASED ON TYPE-II PROGRESSIVELY CENSORED SAMPLES , 2002 .

[15]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[16]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[17]  Umesh Singh,et al.  Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors , 2013 .

[18]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[19]  Debasis Kundu,et al.  Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.

[20]  B. Epstein Truncated Life Tests in the Exponential Case , 1954 .