Approximate Hamilton decompositions of random graphs

We show that if pn ≫ log n the binomial random graph Gn,p has an approximate Hamilton decomposition. More precisely, we show that in this range Gn,p contains a set of edge-disjoint Hamilton cycles covering almost all of its edges. This is best possible in the sense that the condition that pn ≫ log n is necessary. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012 © 2012 Wiley Periodicals, Inc.

[1]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[2]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[3]  Guojun Li,et al.  Edge disjoint Hamilton cycles in graphs , 2000 .

[4]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.

[5]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[6]  Deryk Osthus,et al.  Hamilton decompositions of regular tournaments , 2009, 0908.3411.

[7]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[8]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[9]  C. Nash-Williams,et al.  Hamiltonian arcs and circuits , 1971 .

[10]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[11]  Béla Bollobás,et al.  Random Graphs , 1985 .

[12]  W. T. Tutte The Factors of Graphs , 1952, Canadian Journal of Mathematics.

[13]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[14]  Alan M. Frieze,et al.  On packing Hamilton cycles in ?-regular graphs , 2005, J. Comb. Theory, Ser. B.

[15]  C. Thomassen Edge-Disjoint Hamiltonian Paths and Cycles in Tournaments , 1982 .

[16]  Alan M. Frieze,et al.  Packing hamilton cycles in random and pseudo-random hypergraphs , 2012, Random Struct. Algorithms.

[17]  Béla Bollobás,et al.  On matchings and hamiltonian cycles in random graphs Annals of Discrete Mathematics 28 , 1985 .

[18]  Nicholas C. Wormald,et al.  Random Matchings Which Induce Hamilton Cycles and Hamiltonian Decompositions of Random Regular Graphs , 2001, J. Comb. Theory, Ser. B.

[19]  Alan M. Frieze,et al.  Packing tight Hamilton cycles in 3-uniform hypergraphs , 2011, SODA '11.

[20]  Daniela Kühn,et al.  Edge-disjoint Hamilton cycles in graphs , 2012, J. Comb. Theory, Ser. B.