Multidimensional Multichannel FIR Deconvolution Using GrÖbner Bases

We present a new method for general multidimensional multichannel deconvolution with finite impulse response (FIR) convolution and deconvolution filters using Grobner bases. Previous work formulates the problem of multichannel FIR deconvolution as the construction of a left inverse of the convolution matrix, which is solved by numerical linear algebra. However, this approach requires the prior information of the support of deconvolution filters. Using algebraic geometry and Grobner bases, we find necessary and sufficient conditions for the existence of exact deconvolution FIR filters and propose simple algorithms to find these deconvolution filters. The main contribution of our work is to extend the previous Grobner basis results on multidimensional multichannel deconvolution for polynomial or causal filters to general FIR filters. The proposed algorithms obtain a set of FIR deconvolution filters with a small number of nonzero coefficients (a desirable feature in the impulsive noise environment) and do not require the prior information of the support. Moreover, we provide a complete characterization of all exact deconvolution FIR filters, from which good FIR deconvolution filters under the additive white noise environment are found. Simulation results show that our approaches achieve good results under different noise settings

[1]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[2]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[3]  B. Buchberger Gröbner Bases and Applications: Introduction to Gröbner Bases , 1998 .

[4]  N. K. Bose,et al.  Multidimensional FIR filter bank design using Grobner bases , 1999 .

[5]  Jan Flusser,et al.  Multichannel blind iterative image restoration , 2003, IEEE Trans. Image Process..

[6]  Robert W. Heath,et al.  Blurs and perfect image restoration , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[7]  E. Fornasini,et al.  Multidimensional Systems with Finite Support Behaviors: Signal Structure, Generation, and Detection , 1998 .

[8]  Alberto Zanoni,et al.  Numerical stability and stabilization of Groebner basis computation , 2002, ISSAC '02.

[9]  C. A. Berenstein,et al.  Exact deconvolution for multiple convolution operators-an overview, plus performance characterizations for imaging sensors , 1990, Proc. IEEE.

[10]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[11]  Carlos A. Berenstein,et al.  Residue Currents and Bezout Identities , 1993 .

[12]  Glenn R. Easley,et al.  Local Multichannel Deconvolution , 2004, Journal of Mathematical Imaging and Vision.

[13]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[14]  Bruno Buchberger,et al.  A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.

[15]  Allan O. Steinhardt,et al.  Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.

[16]  Yoram Bresler,et al.  Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms , 1999, IEEE Trans. Image Process..

[17]  H. Stetter,et al.  Numerical computation of Gröbner bases , 2008 .

[18]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[19]  Lee C. Potter,et al.  Multi-Channel Multi-Variate Equalizer Design , 2003, Multidimens. Syst. Signal Process..

[20]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[21]  M. Jacobsen,et al.  Image Restoration , 2000 .

[22]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[23]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[24]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[25]  Hyungju Park Optimal design of synthesis filters in multidimensional perfect reconstruction FIR filter banks using Grobner bases , 2002 .

[26]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[27]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[28]  Yoram Bresler,et al.  FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders , 1998, IEEE Trans. Signal Process..

[29]  Martin Vetterli,et al.  Gröbner Bases and Multidimensional FIR Multirate Systems , 1997, Multidimens. Syst. Signal Process..

[30]  David F. Walnut Solutions to deconvolution equations using nonperiodic sampling , 1998 .

[31]  Chrysostomos L. Nikias,et al.  EVAM: an eigenvector-based algorithm for multichannel blind deconvolution of input colored signals , 1995, IEEE Trans. Signal Process..

[32]  G Harikumar,et al.  Exact image deconvolution from multiple FIR blurs , 1999, IEEE Trans. Image Process..