Multidimensional Multichannel FIR Deconvolution Using GrÖbner Bases
暂无分享,去创建一个
[1] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[2] 임종인,et al. Gröbner Bases와 응용 , 1995 .
[3] B. Buchberger. Gröbner Bases and Applications: Introduction to Gröbner Bases , 1998 .
[4] N. K. Bose,et al. Multidimensional FIR filter bank design using Grobner bases , 1999 .
[5] Jan Flusser,et al. Multichannel blind iterative image restoration , 2003, IEEE Trans. Image Process..
[6] Robert W. Heath,et al. Blurs and perfect image restoration , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.
[7] E. Fornasini,et al. Multidimensional Systems with Finite Support Behaviors: Signal Structure, Generation, and Detection , 1998 .
[8] Alberto Zanoni,et al. Numerical stability and stabilization of Groebner basis computation , 2002, ISSAC '02.
[9] C. A. Berenstein,et al. Exact deconvolution for multiple convolution operators-an overview, plus performance characterizations for imaging sensors , 1990, Proc. IEEE.
[10] Eric Moulines,et al. Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..
[11] Carlos A. Berenstein,et al. Residue Currents and Bezout Identities , 1993 .
[12] Glenn R. Easley,et al. Local Multichannel Deconvolution , 2004, Journal of Mathematical Imaging and Vision.
[13] Eric Moulines,et al. Subspace methods for the blind identification of multichannel FIR filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.
[14] Bruno Buchberger,et al. A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.
[15] Allan O. Steinhardt,et al. Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.
[16] Yoram Bresler,et al. Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms , 1999, IEEE Trans. Image Process..
[17] H. Stetter,et al. Numerical computation of Gröbner bases , 2008 .
[18] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[19] Lee C. Potter,et al. Multi-Channel Multi-Variate Equalizer Design , 2003, Multidimens. Syst. Signal Process..
[20] Helmut Bölcskei,et al. Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..
[21] M. Jacobsen,et al. Image Restoration , 2000 .
[22] Jorge Herbert de Lira,et al. Two-Dimensional Signal and Image Processing , 1989 .
[23] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[24] Hans J. Stetter,et al. Numerical polynomial algebra , 2004 .
[25] Hyungju Park. Optimal design of synthesis filters in multidimensional perfect reconstruction FIR filter banks using Grobner bases , 2002 .
[26] Martin Vetterli,et al. Oversampled filter banks , 1998, IEEE Trans. Signal Process..
[27] S. R. Czapor,et al. Computer Algebra , 1983, Computing Supplementa.
[28] Yoram Bresler,et al. FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders , 1998, IEEE Trans. Signal Process..
[29] Martin Vetterli,et al. Gröbner Bases and Multidimensional FIR Multirate Systems , 1997, Multidimens. Syst. Signal Process..
[30] David F. Walnut. Solutions to deconvolution equations using nonperiodic sampling , 1998 .
[31] Chrysostomos L. Nikias,et al. EVAM: an eigenvector-based algorithm for multichannel blind deconvolution of input colored signals , 1995, IEEE Trans. Signal Process..
[32] G Harikumar,et al. Exact image deconvolution from multiple FIR blurs , 1999, IEEE Trans. Image Process..