Transparent and Efficient Parallelization of Swarm Algorithms

This article presents an approach for the efficient and transparent parallelization of a large class of swarm algorithms, specifically those where the multiagent paradigm is used to implement the functionalities of bioinspired entities, such as ants and birds. Parallelization is achieved by partitioning the space on which agents operate onto multiple regions and assigning each region to a different computing node. Data consistency and conflict issues, which can arise when several agents concurrently access shared data, are handled using a purposely developed notion of logical time. This approach enables a transparent porting onto parallel/distributed architectures, as the developer is only in charge of defining the behavior of the agents, without having to cope with issues related to parallel programming and performance optimization. The approach has been evaluated for a very popular swarm algorithm, the ant-based spatial clustering and sorting of items, and results show good performance and scalability.

[1]  Thomas Stützle,et al.  An analysis of communication policies for homogeneous multi-colony ACO algorithms , 2010, Inf. Sci..

[2]  Ziv Bar-Joseph,et al.  Distributed information processing in biological and computational systems , 2014, Commun. ACM.

[3]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[4]  Eliseo Ferrante,et al.  Swarm robotics: a review from the swarm engineering perspective , 2013, Swarm Intelligence.

[5]  Carlo Ghezzi,et al.  Team-level programming of drone sensor networks , 2014, SenSys.

[6]  Iain A. Stewart,et al.  Improving Ant Colony Optimization performance on the GPU using CUDA , 2013, 2013 IEEE Congress on Evolutionary Computation.

[7]  Marco Dorigo,et al.  On the Performance of Ant-based Clustering , 2003, HIS.

[8]  Agostino Poggi,et al.  Multiagent Systems , 2006, Intelligenza Artificiale.

[9]  Paul Albuquerque,et al.  A Parallel Cellular Ant Colony Algorithm for Clustering and Sorting , 2002, ACRI.

[10]  Giandomenico Spezzano,et al.  So-Grid: A self-organizing Grid featuring bio-inspired algorithms , 2008, TAAS.

[11]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[12]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[13]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[14]  Danny Weyns,et al.  A Formal Model for Situated Multi-Agent Systems , 2004, Fundam. Informaticae.

[15]  Martín Pedemonte,et al.  A survey on parallel ant colony optimization , 2011, Appl. Soft Comput..

[16]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[17]  Eliseo Ferrante,et al.  ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems , 2012, Swarm Intelligence.

[18]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[19]  Thomas Stützle,et al.  Parallel Ant Colony Optimization for the Traveling Salesman Problem , 2006, ANTS Workshop.

[20]  Jun Zhang,et al.  Pseudo Parallel Ant Colony Optimization for Continuous Functions , 2007, Third International Conference on Natural Computation (ICNC 2007).

[21]  Michael Lees,et al.  Modelling Environments for Distributed Simulation , 2004, E4MAS.

[22]  Martyn Amos,et al.  Enhancing data parallelism for Ant Colony Optimization on GPUs , 2013, J. Parallel Distributed Comput..

[23]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[24]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[25]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[26]  Mitica Craus,et al.  Parallel framework for ant-like algorithms , 2004, Third International Symposium on Parallel and Distributed Computing/Third International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks.

[27]  Gerhard Weiss,et al.  Multiagent Systems , 1999 .

[28]  Thomas Stützle,et al.  Parallel multicolony aco algorithm with exchange of solutions , 2006 .

[29]  Franco Cicirelli,et al.  An approach for scalable parallel execution of ant algorithms , 2014, 2014 International Conference on High Performance Computing & Simulation (HPCS).

[30]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[31]  B. S. Logan Evaluating Agent Architectures Using Simulation , 2007 .

[32]  Gerardo Beni,et al.  From Swarm Intelligence to Swarm Robotics , 2004, Swarm Robotics.

[33]  Giandomenico Spezzano,et al.  QoS-based dissemination of content in Grids , 2008, Future Gener. Comput. Syst..

[34]  Peter J. Bentley,et al.  Fast bio-inspired computation using a GPU-based systemic computer , 2010, Parallel Comput..

[35]  Mauro Birattari,et al.  Autonomous task partitioning in robot foraging: an approach based on cost estimation , 2013, Adapt. Behav..

[36]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[37]  William G. Griswold,et al.  Getting started with ASPECTJ , 2001, CACM.

[38]  Franco Cicirelli,et al.  Efficient environment management for distributed simulation of large‐scale situated multi‐agent systems , 2015, Concurr. Comput. Pract. Exp..

[39]  Julia Handl,et al.  Improved Ant-Based Clustering and Sorting , 2002, PPSN.

[40]  Stefania Bandini,et al.  Dealing with space in multi--agent systems: a model for situated MAS , 2002, AAMAS '02.

[41]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[42]  Yan Yang,et al.  Parallel Implementation of Ant-Based Clustering Algorithm Based on Hadoop , 2012, ICSI.

[43]  Y. Shoham Introduction to Multi-Agent Systems , 2002 .

[44]  Steffen Straßburger,et al.  Scalability in distributed simulations of agent-based models , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[45]  Costin Badica,et al.  Multi-agent approach to distributed ant colony optimization , 2013, Sci. Comput. Program..

[46]  Marco Dorigo,et al.  Ant-Based Clustering and Topographic Mapping , 2006, Artificial Life.

[47]  Jean-Louis Deneubourg,et al.  The dynamics of collective sorting robot-like ants and ant-like robots , 1991 .

[48]  Brian Logan,et al.  The distributed simulation of multiagent systems , 2001, Proc. IEEE.

[49]  Karthik Dantu,et al.  Programming micro-aerial vehicle swarms with karma , 2011, SenSys.

[50]  Eliseo Ferrante,et al.  Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms , 2013, IEEE Robotics & Automation Magazine.

[51]  Franco Cicirelli,et al.  An Agent Infrastructure for Distributed Simulations over HLA and a Case Study Using Unmanned Aerial Vehicles , 2007, 40th Annual Simulation Symposium (ANSS'07).

[52]  Costin Badica,et al.  Multi-Agent Distributed Framework for Swarm Intelligence , 2013, ICCS.

[53]  Michael Wooldridge,et al.  Introduction to Multi-Agent Systems , 2016 .