Tropical independence I: Shapes of divisors and a proof of the Gieseker–Petri theorem
暂无分享,去创建一个
[1] Jakub Przybylo,et al. Can Colour-Blind Distinguish Colour Palettes? , 2013, Electron. J. Comb..
[2] Grigory Mikhalkin,et al. Tropical curves, their Jacobians and Theta functions , 2006 .
[3] Matthew Baker,et al. Specialization of linear systems from curves to graphs , 2007 .
[4] Sam Payne,et al. The tropicalization of the moduli space of curves , 2012, 1604.03176.
[5] D. Eisenbud,et al. A simpler proof of the Gieseker-Petri theorem on special divisors , 1983 .
[6] Serguei Norine,et al. Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.
[7] L. Narici,et al. On Non‐Archimedean Analysis a , 1990 .
[8] Vyassa L. Baratham,et al. Towards a tropical proof of the Gieseker–Petri Theorem , 2012, 1205.3987.
[9] Sam Payne,et al. Lifting Divisors on a Generic Chain of Loops , 2014, Canadian Mathematical Bulletin.
[10] D. Eisenbud,et al. Limit linear series: Basic theory , 1986 .
[11] Chang Mou Lim,et al. A note on Brill-Noether thoery and rank determining sets for metric graphs , 2011, 1106.5519.
[12] Amaury Thuillier. Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d'Arakelov , 2005 .
[13] M. Bigas,et al. Petri map for vector bundles near good bundles , 2012, Journal of Pure and Applied Algebra.
[14] Ye Luo. Rank-determining sets of metric graphs , 2011, J. Comb. Theory, Ser. A.
[15] Yoav Len,et al. The Brill–Noether rank of a tropical curve , 2012, 1209.6309.
[16] Josephine Yu,et al. Linear systems on tropical curves , 2009, 0909.3685.
[17] Joe Harris,et al. On the variety of special linear systems on a general algebraic curve , 1980 .
[18] Sam Payne,et al. Nonarchimedean geometry, tropicalization, and metrics on curves , 2011, 1104.0320.
[19] Brian Osserman. A simple characteristic-free proof of the Brill-Noether theorem , 2011, 1108.4967.
[20] Dhar,et al. Self-organized critical state of sandpile automaton models. , 1990, Physical review letters.
[21] Greg Kuperberg,et al. CANONICAL REPRESENTATIVES FOR DIVISOR CLASSES ON TROPICAL CURVES AND THE MATRIX–TREE THEOREM , 2013, Forum of Mathematics, Sigma.
[22] R. Lazarsfeld. Brill-Noether-Petri without degenerations , 1986 .
[23] Michael Kerber,et al. A Riemann–Roch theorem in tropical geometry , 2006, math/0612129.
[24] D. Gieseker. Stable curves and special divisors: Petri's conjecture , 1982 .
[25] Rohit Agrawal,et al. Involutions on Standard Young Tableaux and Divisors on Metric Graphs , 2013, Electron. J. Comb..
[26] Sam Payne,et al. A tropical proof of the Brill-Noether Theorem , 2010, 1001.2774.
[27] Omid Amini,et al. Linear series on metrized complexes of algebraic curves , 2012, 1204.3508.
[28] Nathan Pflueger,et al. Tropical Curves , 2015 .
[29] P. Griffiths,et al. Geometry of algebraic curves , 1985 .