Automatic pavement crack detection using multimodal features fusion deep neural network

[1]  Xing Cai,et al.  Fatigue crack density of asphalt binders under controlled-stress rotational shear load testing , 2021 .

[2]  Jun Yang,et al.  Preparation and evaluation of cooling asphalt concrete modified with SBS and tourmaline anion powder , 2020 .

[3]  Hyun Jong Lee,et al.  One stage detector (RetinaNet)-based crack detection for asphalt pavements considering pavement distresses and surface objects , 2020 .

[4]  Namgyu Kim,et al.  Automated pavement distress detection using region based convolutional neural networks , 2020, International Journal of Pavement Engineering.

[5]  Tingsheng Shen,et al.  Pavement Damage Detection Based on Cascade R-CNN , 2020, CSAE.

[6]  Bin Yu,et al.  Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag , 2020 .

[7]  Xu Yang,et al.  Automated pavement crack detection and segmentation based on two‐step convolutional neural network , 2020, Comput. Aided Civ. Infrastructure Eng..

[8]  Shaopeng Wu,et al.  Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture , 2020 .

[9]  Giuseppe Loprencipe,et al.  Automatic Crack Detection on Road Pavements Using Encoder-Decoder Architecture , 2020, Materials.

[10]  Qiao Dong,et al.  A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations , 2020 .

[11]  Chen Chen,et al.  Pavement crack detection and recognition using the architecture of segNet , 2020, J. Ind. Inf. Integr..

[12]  Lifeng Chen,et al.  Integrating three-dimensional road design and pavement structure analysis based on BIM , 2020 .

[13]  Rytis Augustauskas,et al.  Improved Pixel-Level Pavement-Defect Segmentation Using a Deep Autoencoder , 2020, Sensors.

[14]  Junliang Xing,et al.  RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation , 2019, AAAI.

[15]  Juan Humberto Sossa Azuela,et al.  Fully Convolutional Networks for Automatic Pavement Crack Segmentation , 2019, Computación y Sistemas.

[16]  Liang Song,et al.  Faster region convolutional neural network for automated pavement distress detection , 2019, Road Materials and Pavement Design.

[17]  Hyoungkwan Kim,et al.  Encoder–decoder network for pixel‐level road crack detection in black‐box images , 2019, Comput. Aided Civ. Infrastructure Eng..

[18]  Xuefeng Zhao,et al.  Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network , 2019, Comput. Aided Civ. Infrastructure Eng..

[19]  Shi-Min Hu,et al.  S4Net: Single stage salient-instance segmentation , 2017, Computational Visual Media.

[20]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.