The global and superlinear convergence of a new nonmonotone MBFGS algorithm on convex objective functions
暂无分享,去创建一个
[1] L. Grippo,et al. A nonmonotone line search technique for Newton's method , 1986 .
[2] P. Toint,et al. Local convergence analysis for partitioned quasi-Newton updates , 1982 .
[3] J. Han. GENERAL FORM OF STEPSIZE SELECTION RULES OF LINESEARCH AND RELEVANT ANALYSIS OF GLOBAL CONVERGENCE OF BFGS ALGOMTHM , 1995 .
[4] Guanghui Liu,et al. Global Convergence Analysis of a New Nonmonotone BFGS Algorithm on Convex Objective Functions , 1997, Comput. Optim. Appl..
[5] J. J. Moré,et al. Quasi-Newton Methods, Motivation and Theory , 1974 .
[6] M. Powell. On the Convergence of the Variable Metric Algorithm , 1971 .
[7] Gonglin Yuan,et al. The Superlinear Convergence of a Modified BFGS-Type Method for Unconstrained Optimization , 2004, Comput. Optim. Appl..
[8] Defeng Sun,et al. Global convergece of the bfgs algorithm with nonmonotone linesearch ∗ ∗this work is supported by national natural science foundation$ef: , 1995 .
[9] R. Tewarson,et al. Quasi-Newton Algorithms with Updates from the Preconvex Part of Broyden's Family , 1988 .
[10] J. Nocedal,et al. Global Convergence of a Class of Quasi-newton Methods on Convex Problems, Siam Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches, Nonlinear Programming, Edited , 1996 .
[11] J. Werner. Über die globale Konvergenz von Variable-Metrik-Verfahren mit nicht-exakter Schrittweitenbestimmung , 1978 .
[12] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.