Local buckling loads of sandwich panels made with laminated faces

The paper is devoted to assessing the optimal arrangements of hybrid laminated faces of sandwich panels in order to maximize local buckling loads corresponding to the wrinkling of compressed faces. The analysis is carried out by modelling compressed faces as thin unsymmetric laminates resting on elastic two-parameter foundations. The First-order Shear Deformation Theory, in conjunction with the Rayleigh-Ritz method, has been used to evaluate buckling loads of simply supported flat laminates subjected to in-plane biaxial compression and shear forces. A numerical investigation is intended to support evidence for the influence of laminate parameters (fibre orientation, geometrical dimensions) and foundation parameters (modulus of subgrade reaction and shear modulus); obtained results are reported and discussed in the paper.