Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition

We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.

[1]  S. Honkanen,et al.  Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition , 2013 .

[2]  Nicolas Schiller,et al.  Permeation barrier properties of thin oxide films on flexible polymer substrates , 2009 .

[3]  Craig M. Herzinger,et al.  Variable angle spectroscopic ellipsometry in the vacuum ultraviolet , 2000, SPIE Optics + Photonics.

[4]  P. Chu,et al.  Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization , 2006 .

[5]  Olaf Anderson,et al.  Investigations of TiO2 films deposited by different techniques , 1991 .

[6]  J. Aarik,et al.  Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition , 1997 .

[7]  M. Kuittinen,et al.  Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence , 2012 .

[8]  D. F. Ogletree,et al.  The Nature of Water Nucleation Sites on TiO2(110) Surfaces Revealed by Ambient Pressure X-ray Photoelectron Spectroscopy , 2007 .

[9]  Hong Chen,et al.  Growth of the [110] Oriented TiO2 Nanorods on ITO Substrates by Sputtering Technique for Dye-Sensitized Solar Cells , 2014, Front. Mater..

[10]  Muhammad Saleem,et al.  Thermal properties of TiO2 films grown by atomic layer deposition , 2012 .

[11]  Min Kyu Kim,et al.  Low-temperature Atomic Layer Deposition of TiO 2 , Al 2 O 3 , and ZnO Thin Films , 2011 .

[12]  D. Mitchell,et al.  TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition , 2005 .

[13]  Muhammad Saleem,et al.  Thermo-optic coefficient of Ormocomp and comparison of polymer materials in athermal replicated subwavelength resonant waveguide gratings , 2013 .

[14]  W. McGahan,et al.  Spectroscopic Ellipsometry and Reflectometry: A User's Guide , 1999 .

[15]  Mikko Ritala,et al.  Effect of water dose on the atomic layer deposition rate of oxide thin films , 2000 .

[16]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[17]  Jari Turunen,et al.  Determination of thermo-optic properties of atomic layer deposited thin TiO2 films for athermal resonant waveguide gratings by spectroscopic ellipsometry , 2014, Photonics Europe.

[18]  P. O’Brien,et al.  Atomic Layer Epitaxy , 2008 .

[19]  Jari Turunen,et al.  Impact of Atomic Layer Deposition to Nanophotonic Structures and Devices , 2014, Front. Mater..

[20]  Mikko Ritala,et al.  Advanced ALE processes of amorphous and polycrystalline films , 1997 .

[21]  Growth mode transition of atomic layer deposited Al2O3 on porous TiO2 electrodes of dye-sensitized solar cells , 2012 .

[22]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.