A least-squares virtual element method for second-order elliptic problems

Abstract In this paper, a least-squares virtual element method is presented for approximating the vector and scalar variables of second-order elliptic problems. The H ( div ) -conforming and scalar-conforming virtual elements are used to approximate the vector and scalar variables, respectively. The method allows the use of very general polygonal meshes and leads to a symmetric positive definite system. The optimal a priori error estimates are established for the vector variable in H ( div ) norm and the scalar variable in H 1 norm. A simple a posteriori error estimator is also presented and proved to be reliable and efficient. The virtual element method handles the hanging nodes naturally, thus the local mesh post-processing to remove hanging nodes is not required. Numerical experiments are conducted to verify the accuracy of the method, and show the effectiveness and flexibility of the adaptive strategy driven by the proposed estimator and suitable mesh refinement strategy.

[1]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[2]  T. Manteuffel,et al.  First-order system least squares for second-order partial differential equations: part I , 1994 .

[3]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[4]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[5]  Stefano Berrone,et al.  A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..

[6]  Stefano Berrone,et al.  A residual a posteriori error estimate for the Virtual Element Method , 2017 .

[7]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[8]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[9]  David Mora,et al.  A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..

[10]  Gang Wang,et al.  A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes , 2019, Computer Methods in Applied Mechanics and Engineering.

[11]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[12]  Hailong Guo,et al.  Superconvergent gradient recovery for virtual element methods , 2018, Mathematical Models and Methods in Applied Sciences.

[13]  Zhiqiang Cai,et al.  Goal-Oriented Local A Posteriori Error Estimators for H(div) Least-Squares Finite Element Methods , 2011, SIAM J. Numer. Anal..

[14]  Louis A. Povinelli,et al.  Optimal least-squares finite element method for elliptic problems , 1993 .

[15]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[16]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[17]  Peter Wriggers,et al.  A Virtual Element Method for 2D linear elastic fracture analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[18]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[19]  Long Chen,et al.  A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes , 2018, J. Sci. Comput..

[20]  Odd Andersen,et al.  Virtual element method for geomechanical simulations of reservoir models , 2016, Computational Geosciences.

[21]  Long Chen,et al.  An interface-fitted mesh generator and virtual element methods for elliptic interface problems , 2017, J. Comput. Phys..

[22]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[23]  Chris Brunsdon,et al.  Estimating probability surfaces for geographical point data: an adaptive kernel algorithm , 1995 .

[24]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[25]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[26]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[27]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[28]  Peter Wriggers,et al.  Computational homogenization of polycrystalline materials with the Virtual Element Method , 2019, Computer Methods in Applied Mechanics and Engineering.

[29]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .