Switching Interacting Particle Systems: Scaling Limits, Uphill Diffusion and Boundary Layer

[1]  J. Lennon,et al.  Principles of seed banks and the emergence of complexity from dormancy , 2021, Nature Communications.

[2]  A. Lokoshchenko,et al.  STEADY-STATE CREEP OF A LONG NARROW MEMBRANE INSIDE A HIGH RIGID MATRIX AT VARIABLE TRANSVERSE PRESSURE , 2021, Journal of Applied Mechanics and Technical Physics.

[3]  E. Saada,et al.  Invariant measures for multilane exclusion process , 2021, 2105.12974.

[4]  E. Presutti,et al.  Reservoirs, Fick law, and the Darken effect , 2021, Journal of Mathematical Physics.

[5]  N. Kurt,et al.  Population genetic models of dormancy , 2020, 2012.00810.

[6]  F. Hollander,et al.  Principles of seed banks: complexity emerging from dormancy. , 2020, 2012.00072.

[7]  Joe P. J. Chen,et al.  Higher order hydrodynamics and equilibrium fluctuations of interacting particle systems , 2020, 2008.13403.

[8]  F. Redig,et al.  Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations , 2020, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[9]  F. Hollander,et al.  Spatial populations with seed-bank: well-posedness, duality and equilibrium , 2020, Electronic Journal of Probability.

[10]  F. Redig,et al.  Hydrodynamics for the partial exclusion process in random environment , 2019, 1911.12564.

[11]  N. Kurt,et al.  The seed bank coalescent with simultaneous switching , 2018, 1812.03783.

[12]  S. Majumdar,et al.  Run-and-tumble particle in one-dimensional confining potentials: Steady-state, relaxation, and first-passage properties. , 2018, Physical review. E.

[13]  Daniele Andreucci,et al.  Fick and Fokker–Planck Diffusion Law in Inhomogeneous Media , 2018, Journal of Statistical Physics.

[14]  J. Tailleur,et al.  Exact Hydrodynamic Description of Active Lattice Gases. , 2018, Physical review letters.

[15]  Jeffrey Kuan Probability Distributions of Multi-species q-TAZRP and ASEP as Double Cosets of Parabolic Subgroups , 2018, Annales Henri Poincaré.

[16]  C. Maes,et al.  Active processes in one dimension. , 2018, Physical review. E.

[17]  S. Redner,et al.  Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension , 2017, 1711.08474.

[18]  H. Posch,et al.  Driven tracer with absolute negative mobility , 2017, 1710.03997.

[19]  'Etienne Fodor,et al.  The statistical physics of active matter: From self-catalytic colloids to living cells , 2017, Physica A: Statistical Mechanics and its Applications.

[20]  C. Giardinà,et al.  Nonequilibrium two-dimensional Ising model with stationary uphill diffusion. , 2017, Physical review. E.

[21]  E. Presutti,et al.  Microscopic models for uphill diffusion , 2017, 1705.01825.

[22]  F. Redig,et al.  Factorized Duality, Stationary Product Measures and Generating Functions , 2017, Journal of Statistical Physics.

[23]  U. Seifert,et al.  Extreme fluctuations of active Brownian motion , 2016, 1603.03026.

[24]  F. Peruani,et al.  Diffusion properties of active particles with directional reversal , 2015, 1511.04542.

[25]  R. Krishna,et al.  Uphill diffusion in multicomponent mixtures. , 2015, Chemical Society reviews.

[26]  N. Crampe,et al.  Open two-species exclusion processes with integrable boundaries , 2014, 1412.5939.

[27]  C. Giardinà,et al.  Duality for Stochastic Models of Transport , 2012, 1212.3154.

[28]  George Yin,et al.  Properties of solutions of stochastic differential equations with continuous-state-dependent switching , 2010 .

[29]  T. Bodineau,et al.  Large deviations of the empirical currents for a boundary driven reaction diffusion model , 2010, 1009.0428.

[30]  J. Kurchan,et al.  Duality and Hidden Symmetries in Interacting Particle Systems , 2008, 0810.1202.

[31]  James B. Martin,et al.  Multiclass processes, dual points and M/M/1 queues , 2005, math-ph/0509045.

[32]  James B. Martin,et al.  Stationary distributions of multi-type totally asymmetric exclusion processes , 2005, math/0501291.

[33]  B. Derrida,et al.  Large Deviation of the Density Profile in the Steady State of the Open Symmetric Simple Exclusion Process , 2001, cond-mat/0109346.

[34]  B. Derrida,et al.  Exact solution of a 1d asymmetric exclusion model using a matrix formulation , 1993 .

[35]  Alessandro Pellegrinotti,et al.  Nonequilibrium fluctuations in particle systems modelling reaction-diffusion equations , 1992 .

[36]  Pablo A. Ferrari,et al.  Reaction-diffusion equations for interacting particle systems , 1986 .

[37]  Lebowitz,et al.  Rigorous derivation of reaction-diffusion equations with fluctuations. , 1985, Physical review letters.

[38]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[39]  E. Davies,et al.  SEMIGROUPS OF LINEAR OPERATORS AND APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS: (Applied Mathematical Sciences, 44) , 1984 .

[40]  Domokos Szász,et al.  Random walks with internal degrees of freedom , 1983 .

[41]  J. M. Hill On the Solution of Reaction—Diffusion Equations , 1981 .

[42]  J. M. Hill A discrete random walk model for diffusion in media with double diffusivity , 1980, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[43]  Elias C. Aifantis,et al.  ON THE THEORY OF DIFFUSION IN MEDIA WITH DOUBLE DIFFUSIVITY II. BOUNDARY-VALUE PROBLEMS , 1980 .

[44]  E. Aifantis,et al.  ON THE THEORY OF DIFFUSION IN MEDIA WITH DOUBLE DIFFUSIVITY I. BASIC MATHEMATICAL RESULTS , 1980 .

[45]  E. Aifantis A new interpretation of diffusion in high-diffusivity paths—a continuum approach , 1979 .

[46]  M. Cavalcanti,et al.  STABILIZATION OF THE WAVE EQUATION WITH LOCALIZED COMPENSATING FRICTIONAL AND KELVIN-VOIGT DISSIPATING MECHANISMS , 2017 .

[47]  J. Elf,et al.  Diffusion properties of active particles with directional reversal , 2016 .

[48]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[49]  D. Bernstein,et al.  Some explicit formulas for the matrix exponential , 1993, IEEE Trans. Autom. Control..

[50]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[51]  Carlo Marchioro,et al.  Heat flow in an exactly solvable model , 1982 .

[52]  Christopher J. Preston Gibbs states on countable sets: Interacting particle systems , 1974 .