A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory

Working memory represents the ability of the brain to hold information for relatively short periods of time. Working memory is believed mediated by persistent neuronal firing. A broadly accepted hypothesis is that persistent activity is generated by reverberating synaptic input. However, single cortical neurons capable of showing persistent firing were recently reported. In this modeling study, we propose a cellular mechanism to generate persistent firing of multiple firing rates in single neurons. In the proposed mechanism, bistable concentrations of inositol 1,4,5-trisphosphate (IP3) and Ca2+ is achieved by IP3 formation and IP3-induced Ca2+ release from stores in multiple subcellular domains. A postsynaptic firing rate-dependent switching of these bistable elements can demonstrate graded persistent firing of the rat entorhinal neurons. Such a firing rate-dependent switching may be extended to a variety of intracellular Ca2+ signaling cascades.

[1]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[2]  M. Blaustein,et al.  Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores , 2001, Trends in Neurosciences.

[3]  Stephen C. Cannon,et al.  A proposed neural network for the integrator of the oculomotor system , 1983, Biological Cybernetics.

[4]  S. Haj-Dahmane,et al.  Muscarinic receptors regulate two different calcium‐dependent non‐selective cation currents in rat prefrontal cortex , 1999, The European journal of neuroscience.

[5]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[6]  M. Hasselmo,et al.  Simulations of the Role of the Muscarinic-Activated Calcium-Sensitive Nonspecific Cation CurrentINCM in Entorhinal Neuronal Activity during Delayed Matching Tasks , 2002, The Journal of Neuroscience.

[7]  S. Thompson,et al.  The lifetime of inositol 1,4,5-trisphosphate in single cells , 1995, The Journal of general physiology.

[8]  Teiichi Furuichi,et al.  Calmodulin Mediates Calcium-Dependent Inactivation of the Cerebellar Type 1 Inositol 1,4,5-Trisphosphate Receptor , 1999, Neuron.

[9]  K. Mikoshiba,et al.  Regulation of nerve growth mediated by inositol 1,4,5-trisphosphate receptors in growth cones. , 1998, Science.

[10]  T Okada,et al.  A phenytoin‐sensitive cationic current participates in generating the afterdepolarization and burst afterdischarge in rat neocortical pyramidal cells , 1998, The European journal of neuroscience.

[11]  L. Stryer,et al.  Molecular model for receptor-stimulated calcium spiking. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Y. E. Goldman,et al.  Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate , 1987, Nature.

[13]  K. Mikoshiba,et al.  Inositol 1,4,5‐Trisphosphate Receptor‐Mediated Ca2+ Signaling in the Brain , 1995, Journal of neurochemistry.

[14]  A. Koulakov,et al.  Model for a robust neural integrator , 2002, Nature Neuroscience.

[15]  A. Konnerth,et al.  Stores Not Just for Storage Intracellular Calcium Release and Synaptic Plasticity , 2001, Neuron.

[16]  Jeffrey Amundson,et al.  Calcium waves , 1993, Current Opinion in Neurobiology.

[17]  H. Galiana,et al.  A bilateral model for central neural pathways in vestibuloocular reflex. , 1984, Journal of neurophysiology.

[18]  J. Wess,et al.  Muscarinic Induction of Hippocampal Gamma Oscillations Requires Coupling of the M1 Receptor to Two Mixed Cation Currents , 2002, Neuron.

[19]  H. Seung,et al.  In vivo intracellular recording and perturbation of persistent activity in a neural integrator , 2001, Nature Neuroscience.

[20]  L. Loew,et al.  A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. , 2004, Cell calcium.

[21]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[22]  Guosong Liu,et al.  Regulation of Dendritic Spine Morphology and Synaptic Function by Shank and Homer , 2001, Neuron.

[23]  H. Seung,et al.  Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. , 2000, Journal of neurophysiology.

[24]  B H Gähwiler,et al.  Characterization of a Calcium‐dependent Current Generating a Slow Afterdepolarization of CA3 Pyramidal Cells in Rat Hippocampal Slice Cultures , 1993, The European journal of neuroscience.

[25]  J. Putney,et al.  Spatial and temporal aspects of cellular calcium signaling , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[27]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[28]  Patrick Delmas,et al.  Functional organization of PLC signaling microdomains in neurons , 2004, Trends in Neurosciences.

[29]  M J Rosen,et al.  A theoretical neural integrator. , 1972, IEEE transactions on bio-medical engineering.

[30]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[31]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[32]  S. Grossberg,et al.  Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells as Substrate for Adaptive Timing of the Classically Conditioned Eye-Blink Response , 1996, The Journal of Neuroscience.

[33]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[34]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[35]  Edward L. Keller,et al.  Characteristics of head rotation and eye movement-related neurons in alert monkey vestibular nucleus , 1975, Brain Research.

[36]  Roger Y. Tsien,et al.  Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression , 1998, Nature.

[37]  H. Seung,et al.  Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. , 2003, Cerebral cortex.

[38]  T Fukai,et al.  THE ROLE OF Ca 2 þ-DEPENDENT CATIONIC CURRENT IN GENERATING GAMMA FREQUENCY RHYTHMIC BURSTS : MODELING STUDY , 2002 .

[39]  P. De Koninck,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. , 1998, Science.

[40]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.

[41]  A. Alonso,et al.  Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons. , 1997, Journal of neurophysiology.

[42]  C. Koch,et al.  Multiple channels and calcium dynamics , 1989 .

[43]  Michael J. Berridge,et al.  Inositol phosphates and cell signalling , 1989, Nature.

[44]  Samuel S-H Wang,et al.  Integrating over time with dendritic wave-fronts , 2003, Nature Neuroscience.

[45]  J. Putney,et al.  Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores , 2000, Cellular and Molecular Life Sciences CMLS.

[46]  R. Romo,et al.  Temporal Evolution of a Decision-Making Process in Medial Premotor Cortex , 2002, Neuron.

[47]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[48]  Katsunori Kitano,et al.  spike-timing-dependent plasticity , 2002 .

[49]  Keli Xu,et al.  Calcium oscillations increase the efficiency and specificity of gene expression , 1998, Nature.

[50]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[51]  Paul A. Johnston,et al.  Mechanism of Ca 2 + Inhibition of Inositol 1 , 4 , 5 = Trisphosphate ( Imp 3 ) Binding to the Cerebellar InsPs Receptor * , 2022 .

[52]  M. Tanabe,et al.  Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. , 1999, Science.

[53]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[54]  C. Valenzuela,et al.  Ca2+ store‐dependent potentiation of Ca2+‐activated non‐selective cation channels in rat hippocampal neurones in vitro , 1999, The Journal of physiology.

[55]  T. Südhof,et al.  Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor. , 1992, The Journal of biological chemistry.

[56]  S. Snyder,et al.  Differential immunohistochemical localization of inositol 1,4,5- trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  J. Wilson,et al.  Inositol-1,4,5-Trisphosphate , 1995 .

[58]  R. Penner,et al.  Store depletion and calcium influx. , 1997, Physiological reviews.

[59]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[60]  H. Sompolinsky,et al.  Temporal integration by calcium dynamics in a model neuron , 2003, Nature Neuroscience.

[61]  K. Mikoshiba,et al.  Type 1 Inositol 1,4,5-Trisphosphate Receptor Is Required for Induction of Long-Term Depression in Cerebellar Purkinje Neurons , 1998, The Journal of Neuroscience.

[62]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[63]  A V Somlyo,et al.  Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[64]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[65]  W. N. Ross,et al.  Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons , 2000, The Journal of Neuroscience.