Parametric investigation of the buckling performance of metal-plate-connected joints
暂无分享,去创建一个
Abstract A comprehensive analytic study has been conducted to investigate the instability problems of metal-plate-connected (MPC) joints in light frame trusses. The primary objective in this study is to determine the governing factors that constitute the buckling of the metal connectors and their effects on the structural response of joints. The numeric data presented in this paper has emerged from a broad base that was founded on over 350 advanced computer simulations, and was supported by available experimental results obtained by others. This basic-to-applied research includes practical engineering parameters such as size of gaps, shear lengths, gauge o connectors, size of unbraced areas, failure modes, and progressive disintegration of joints. Square-end members have been emphasized though the results cover the custom-made fitted joints. The results indicate that chord shears cause and dominate the buckling of MPC joints, and the shear length has a more pronounced effect than the size of gaps. Further, large gauges and small unbraced areas improve the buckling response. Several practical recommendations have been suggested throughout the paper. The study reveals that the engineering of single web-to-chord MPC joints should not be interpreted for multi-area joints, even where one web is in tension and the other in compression. Finally, the results obtained from this study favorably agree with experimental data by others, and the classic buckling theories for other structural components.
[1] S. Timoshenko. Theory of Elastic Stability , 1936 .
[2] M. Morsi,et al. Framework methods for orthotropic plates , 1986 .