Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells

[1]  Zhigang Zang,et al.  Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells , 2022, Nano-Micro Letters.

[2]  X. Liu,et al.  Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive , 2022, Nature Photonics.

[3]  Bryon W. Larson,et al.  Surface reaction for efficient and stable inverted perovskite solar cells , 2022, Nature.

[4]  Yang Yang,et al.  Spontaneous Hybrid Cross‐Linked Network Induced by Multifunctional Copolymer toward Mechanically Resilient Perovskite Solar Cells , 2022, Advanced Functional Materials.

[5]  Meicheng Li,et al.  24.8%-Efficient Planar Perovskite Solar Cells via Ligand-Engineered TiO 2 Deposition , 2022, SSRN Electronic Journal.

[6]  Xingwang Zhang,et al.  Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells , 2022, Science.

[7]  G. Fang,et al.  Origins and influences of metallic lead in perovskite solar cells , 2022, Joule.

[8]  G. Fang,et al.  Internal Encapsulation for Lead Halide Perovskite Films for Efficient and Very Stable Solar Cells , 2022, Advanced Energy Materials.

[9]  J. Wulff,et al.  Crosslinking Inert Liquidlike Polydimethylsiloxane Brushes Using Bis-Diazirine Chemical Insertion for Enhanced Mechanical Durability , 2022, SSRN Electronic Journal.

[10]  Zhaoxin Wu,et al.  Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids , 2022, Science advances.

[11]  C. Brabec,et al.  A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures , 2021, Nature Energy.

[12]  K. Sun,et al.  Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4% , 2021, Advanced materials.

[13]  Yaowen Li,et al.  Cross-linkable Molecule in Spatial Dimension Boosting Water-stable and High-efficiency Perovskite Solar Cells , 2021, Nano Energy.

[14]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[15]  G. DiLabio,et al.  Structure–function relationships in aryl diazirines reveal optimal design features to maximize C–H insertion , 2021, Chemical science.

[16]  S. Zakeeruddin,et al.  Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer , 2021, Science Advances.

[17]  Jiangyu Li,et al.  Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway , 2021, Nature Communications.

[18]  Q. Gong,et al.  Multiple-Defect Management for Efficient Perovskite Photovoltaics , 2021 .

[19]  Chun‐Sing Lee,et al.  Multifunctional Crosslinking‐Enabled Strain‐Regulating Crystallization for Stable, Efficient α‐FAPbI3‐Based Perovskite Solar Cells , 2021, Advanced materials.

[20]  M. Bonn,et al.  Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells , 2021 .

[21]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[22]  N. Park,et al.  Efficient surface passivation of perovskite films by a post-treatment method with a minimal dose , 2021 .

[23]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[24]  Yongli Gao,et al.  Ion Migration Accelerated Reaction between Oxygen and Metal Halide Perovskites in Light and Its Suppression by Cesium Incorporation , 2021, Advanced Energy Materials.

[25]  Shibo Wang,et al.  Surface passivation using pyridinium iodide for highly efficient planar perovskite solar cells , 2021, Journal of Energy Chemistry.

[26]  Tae Woong Kim,et al.  Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking , 2020 .

[27]  Yongqing Zhang,et al.  Hard and soft Lewis-base behavior for efficient and stable CsPbBr3 perovskite light-emitting diodes , 2020, Nanophotonics.

[28]  Martin A. Green,et al.  Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells , 2020, Science.

[29]  Matthew R. Leyden,et al.  Detrimental Effect of Unreacted PbI2 on the Long‐Term Stability of Perovskite Solar Cells , 2020, Advanced materials.

[30]  B. Dunn,et al.  Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells , 2020, Advanced materials.

[31]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[32]  Jing Ren,et al.  Efficient Bifacial Passivation with Crosslinked Thioctic Acid for High‐Performance Methylammonium Lead Iodide Perovskite Solar Cells , 2019, Advanced materials.

[33]  A. Milani,et al.  A broadly applicable cross-linker for aliphatic polymers containing C–H bonds , 2019, Science.

[34]  L. Duchêne,et al.  I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions , 2019, Energy & Environmental Science.

[35]  Xun Xiao,et al.  Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts , 2019, Science.

[36]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[37]  Z. Yin,et al.  Surface passivation of perovskite film for efficient solar cells , 2019, Nature Photonics.

[38]  Ligang Wang,et al.  A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells , 2019, Science.

[39]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[40]  Xiaodong Li,et al.  In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells , 2018, Nature Communications.

[41]  Yingchun Cheng,et al.  Synergistic effect of anions and cations in additives for highly efficient and stable perovskite solar cells , 2018 .

[42]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[43]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[44]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[45]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[46]  C. Brabec,et al.  Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors , 2016 .

[47]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[48]  N. Zhao,et al.  Native Defect‐Induced Hysteresis Behavior in Organolead Iodide Perovskite Solar Cells , 2016 .

[49]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[50]  Wei Zhang,et al.  Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells , 2015, Nature Communications.

[51]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[52]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[53]  C. Deutsch,et al.  Synthesis of functionalized α-trifluoroethyl amine scaffolds via Grignard addition to N-aryl hemiaminal ethers , 2014 .

[54]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .