Studies in Graphite and Related Compounds I: Electronic Band Structure in Graphite

The Bloch (tight-binding) approximation is applied to a study of graphite The Mean energy per atom and the internuclear distance are calculated in good agreement with experiment. Previous accounts are extended by including certain overlap imegrals and by dealing with a set of parallel layer planes instead of only one plane. The shape of the band due to the π-electrons is calculated, and the experimental x-ray emission spectrum of graphite is interpreted It is concluded that the role of σ-electrons is greater than is often supposed

[1]  F. C. Chalklin Intensity measurements in the very soft X-ray regions , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  C. Coulson,et al.  XXXV.—Graphite Crystals and Crystallites. I. Binding Energies in Small Crystal Layers , 1948, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[3]  C. Coulson,et al.  Electronic levels in simple conjugated systems III. The significance of configuration interaction , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  B. H. Chirgwin,et al.  The electronic structure of conjugated systems. VI , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  N. H. March,et al.  Theoretical Determination of Electron Density in Organic Molecules , 1951, Nature.

[6]  C. Coulson,et al.  The Electronic Structure of Some Polyenes and Aromatic Molecules. VII. Bonds of Fractional Order by the Molecular Orbital Method , 1939 .

[7]  Linus Pauling,et al.  The Dependence of Interatomic Distance on Single Bond-Double Bond Resonance1 , 1935 .

[8]  G. W. Wheland The Resonance Energies of Unsaturated and Aromatic Molecules , 1941 .

[9]  N. H. March Theoretical determination of the electron distribution in benzene by the Thomas–Fermi and the molecular‐orbital methods , 1952 .

[10]  C. A. Coulson,et al.  Two-centre integrals occurring in the theory of molecular structure , 1942, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  S. Altmann π-σ Electronic states in molecules. I. The Hückel approximation , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  Robert S. Mulliken,et al.  Formulas and Numerical Tables for Overlap Integrals , 1949 .

[13]  G. W. Wheland The Quantum Mechanics of Unsaturated and Aromatic Molecules: A Comparison of Two Methods of Treatment , 1934 .

[14]  J. C. Slater Atomic Shielding Constants , 1930 .

[15]  C. Coulson Energy Bands in Graphite , 1947, Nature.

[16]  P. Wallace The Band Theory of Graphite , 1947 .

[17]  S. Altmann π-σ Electronic states in molecules II. The singlet spectrum of ethylene and derivatives , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.