Local minimizers in micromagnetics and related problems

Abstract. Let $\Omega \subset{\bf R}^3$ be a smooth bounded domain and consider the energy functional ${\mathcal J}_{\varepsilon} (m; \Omega) := \int_{\Omega} \left ( \frac{1}{2 \varepsilon} |Dm|^2 + \psi(m) + \frac{1}{2} |h-m|^2 \right) dx + \frac{1}{2} \int_{{\bf R}^3} |h_m|^2 dx. $ Here $\varepsilon>0$ is a small parameter and the admissible function m lies in the Sobolev space of vector-valued functions $W^{1,2}(\Omega;{\bf R}^3)$ and satisfies the pointwise constraint $|m(x)|=1$ for a.e. $x \in \Omega$. The induced magnetic field $h_m \in L^2({\bf R}^3;{\bf R}^3)$ is related to m via Maxwell's equations and the function $\psi:{\bf S}^2 \to{\bf R}$ is assumed to be a sufficiently smooth, non-negative energy density with a multi-well structure. Finally $h \in{\bf R}^3$ is a constant vector. The energy functional ${\mathcal J}_{\varepsilon}$ arises from the continuum model for ferromagnetic materials known as micromagnetics developed by W.F. Brown [9].In this paper we aim to construct local energy minimizers for this functional. Our approach is based on studying the corresponding Euler-Lagrange equation and proving a local existence result for this equation around a fixed constant solution. Our main device for doing so is a suitable version of the implicit function theorem. We then show that these solutions are local minimizers of ${\mathcal J}_{\varepsilon}$ in appropriate topologies by use of certain sufficiency theorems for local minimizers.Our analysis is applicable to a much broader class of functionals than the ones introduced above and on the way to proving our main results we reflect on some related problems.

[1]  R. Toupin The Elastic Dielectric , 1956 .

[2]  A. DeSimone,et al.  Hysteresis and imperfection sensitivity in small ferromagnetic particles , 1995 .

[3]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[4]  Jerrold E. Marsden,et al.  Quasiconvexity at the boundary, positivity of the second variation and elastic stability , 1984 .

[5]  W. Rudin Real and complex analysis , 1968 .

[6]  R. James,et al.  Internal variables and fine-scale oscillations in micromagnetics , 1994 .

[7]  R. Rogers,et al.  The coercivity paradox and nonlocal Ferromagnetism , 1992 .

[8]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[9]  Kewei Zhang Energy minimizers in nonlinear elastostatics and the implicit function theorem , 1991 .

[10]  T. Valent,et al.  Boundary Value Problems of Finite Elasticity , 1988 .

[11]  L. Evans Measure theory and fine properties of functions , 1992 .

[12]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[14]  Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[16]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[17]  David Kinderlehrer,et al.  Theory of magnetostriction with applications to TbxDy1-xFe2 , 1993 .

[18]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[19]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[20]  David Kinderlehrer,et al.  Frustration in ferromagnetic materials , 1990 .

[21]  Jean-Michel Coron,et al.  Harmonic maps with defects , 1986 .