Accelerating 3D Fourier migration with graphics processing units

Computational cost is a major factor that inhibits the practicalapplicationof3Ddepthmigration.Wehavedevelopeda fastparallelschemetospeedup3Dwave-equationdepthmigration on a parallel computing device, i.e., on graphics processing units GPUs. The third-order optimized generalized-screen propagator is used to take advantage of the builtinsoftwareimplementationofthefastFouriertransform.The propagator is coded as a sequence of kernels that can be called from the computer host for each frequency component. Moving the wavefield extrapolation for each depth leveltotheGPUsallowshandlingalarge3Dvelocitymodel,but this scheme can be speeded up to a limited degree over the CPU implementation because of the low-bandwidth data transfer between host and device. We have created further speedupinthisextrapolationschemebyminimizingthelowbandwidth data transfer, which is done by storing the 3D velocity model and imaged data in the device memory, and reducing half the memory demand by compressing the 3D velocity model and imaged data using integer arrays instead of float arrays. By incorporating a 2D tapered function, timeshiftpropagator,andscalingoftheinverseFouriertransform intoacompactkernel,thecomputationtimeisreducedgreatly. Three-dimensional impulse responses and synthetic data exampleshavedemonstratedthattheGPU-basedFouriermigration typically is 25 to 40 times faster than the CPU-based implementation. It enables us to image complex media using 3D depth migration with little concern for computational cost.Themacrovelocitymodelcanbebuiltinamuchshorter turnaroundtime.

[1]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[2]  Nail A. Gumerov,et al.  Fast parallel Particle-To-Grid interpolation for plasma PIC simulations on the GPU , 2008, J. Parallel Distributed Comput..

[3]  J. F. Clearbout Imaging the Earth's interior. , 1985 .

[4]  Ru-Shan Wu,et al.  Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method , 1994 .

[5]  Yanghua Wang ADI plus interpolation: accurate finite‐difference solution to 3D paraxial wave equation , 2001 .

[6]  Dave Hale,et al.  3-D depth migration via McClellan transformations , 1990 .

[7]  Lianjie Huang,et al.  Extended local Rytov Fourier migration method , 1999 .

[8]  Paul L. Stoffa,et al.  Split-Step Fourier Migration , 1990 .

[9]  Optimization approximation with separable variables for the one‐way wave operator , 2004 .

[10]  Biondo Biondi Stable wide‐angle Fourier‐finite difference downward extrapolation of 3‐D wavefields , 2001 .

[11]  Lianjie Huang,et al.  Quasi‐Born Fourier migration , 2000 .

[12]  T. Kunz,et al.  Three dimensional SEG/EAEG models; an update , 1996 .

[13]  Ru-Shan Wu,et al.  Generalization of the phase-screen approximation for the scattering of acoustic waves , 2000 .

[14]  L. Fu Broadband constant‐coefficient propagators , 2005 .

[15]  Yunfei Chen,et al.  GPU accelerated molecular dynamics simulation of thermal conductivities , 2007, J. Comput. Phys..

[16]  Michael Fehler,et al.  Extended local Rytov Fourier migration method , 1999 .

[17]  Linong Liu,et al.  Optimum split-step Fourier 3D depth migration: Developments and practical aspects , 2007 .

[18]  William W. Symes,et al.  Automatic velocity analysis via shot profile migration , 2008 .

[19]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[20]  Hong Liu,et al.  A Method of Using GPU to Accelerate Seismic Pre‐Stack Time Migration , 2009 .

[21]  Ru-Shan Wu,et al.  Extended local Born Fourier migration method , 1999 .

[22]  Jenö Gazdag,et al.  Wave equation migration with the phase-shift method , 1978 .

[23]  Charles C. Mosher,et al.  Seismic imaging on massively parallel computers , 1996 .

[24]  David L. Brown Applications of operator separation in reflection seismology , 1983 .

[25]  D. Ristow,et al.  Fourier finite-difference migration , 1994 .

[26]  Jérôme Le Rousseau,et al.  Modeling and imaging with the scalar generalized‐screen algorithms in isotropic media , 2001 .

[27]  R. Hobbs,et al.  Modelling complex media: an introduction to the phase-screen method , 2000 .

[28]  R. Wu,et al.  Modeling elastic wave forward propagation and reflection using the complex screen method. , 2001, The Journal of the Acoustical Society of America.

[29]  Linong Liu,et al.  3D wavefield extrapolation with optimum split-step Fourier method , 2006 .

[30]  Shufan Yang,et al.  GPU and CPU cooperation parallel visualisation for large seismic data , 2010 .

[31]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[32]  Piero Sguazzero,et al.  Migration of seismic data by phase-shift plus interpolation: Geophysics , 1984 .

[33]  John D. Owens,et al.  Fast Deformable Registration on the GPU: A CUDA Implementation of Demons , 2008, 2008 International Conference on Computational Sciences and Its Applications.