Tridiagonal pairs of q-Racah type

Abstract Let F denote an algebraically closed field and let V denote a vector space over F with finite positive dimension. We consider a pair of linear transformations A : V → V and A ∗ : V → V that satisfy the following conditions: (i) each of A , A ∗ is diagonalizable; (ii) there exists an ordering { V i } i = 0 d of the eigenspaces of A such that A ∗ V i ⊆ V i − 1 + V i + V i + 1 for 0 ⩽ i ⩽ d , where V − 1 = 0 and V d + 1 = 0 ; (iii) there exists an ordering { V i ∗ } i = 0 δ of the eigenspaces of A ∗ such that A V i ∗ ⊆ V i − 1 ∗ + V i ∗ + V i + 1 ∗ for 0 ⩽ i ⩽ δ , where V − 1 ∗ = 0 and V δ + 1 ∗ = 0 ; (iv) there is no subspace W of V such that A W ⊆ W , A ∗ W ⊆ W , W ≠ 0 , W ≠ V . We call such a pair a tridiagonal pair on V. It is known that d = δ . For 0 ⩽ i ⩽ d let θ i (resp. θ i ∗ ) denote the eigenvalue of A (resp. A ∗ ) associated with V i (resp. V i ∗ ). The pair A , A ∗ is said to have q-Racah type whenever θ i = a + b q 2 i − d + c q d − 2 i and θ i ∗ = a ∗ + b ∗ q 2 i − d + c ∗ q d − 2 i for 0 ⩽ i ⩽ d , where q , a , b , c , a ∗ , b ∗ , c ∗ are scalars in F with q , b , c , b ∗ , c ∗ nonzero and q 2 ∉ { 1 , − 1 } . This type is the most general one. We classify up to isomorphism the tridiagonal pairs over F that have q-Racah type. Our proof involves the representation theory of the quantum affine algebra U q ( sl ˆ 2 ) .

[2]  P. Baseilhac The q-deformed analogue of the Onsager algebra: Beyond the Bethe ansatz approach , 2006, math-ph/0604036.

[4]  Paul M. Terwilliger,et al.  Finite-dimensional irreducible modules for the three-point $\mathfrak{sl}_2$ loop algebra , 2007, 0707.2313.

[5]  T. Koornwinder Askey-Wilson polynomials as zonal spherical functions on the SU (2) quantum group , 1993 .

[6]  Simon Litsyn,et al.  Codes and Association Schemes , 2001 .

[7]  Paul M. Terwilliger,et al.  Introduction to Leonard pairs , 2003 .

[8]  Paul M. Terwilliger,et al.  The augmented tridiagonal algebra , 2009, 0904.2889.

[9]  Paul Terwilliger Two relations that generalize the $q$-Serre relations and the Dolan-Grady relations , 2001 .

[10]  Deformed Dolan-Grady relations in quantum integrable models , 2004, hep-th/0404149.

[11]  A new (in)finite-dimensional algebra for quantum integrable models , 2005, math-ph/0503036.

[12]  The shape of a tridiagonal pair , 2004 .

[13]  Askey-Wilson polynomials and the quantum SU(2) group: Survey and applications , 1994, math/9407214.

[14]  F. Grünbaum,et al.  The q -version of a theorem of Bochner , 1996 .

[15]  B. Hartwig The Tetrahedron algebra and its finite-dimensional irreducible modules , 2006, math/0606197.

[16]  Paul M. Terwilliger,et al.  Tridiagonal pairs of Krawtchouk type , 2007, 0706.1065.

[17]  Michio Jimbo,et al.  Aq-difference analogue of U(g) and the Yang-Baxter equation , 1985 .

[18]  J. F. van Diejen,et al.  Algebraic Methods and 𝑞-Special Functions , 1999 .

[19]  Paul M. Terwilliger Two Linear Transformations each Tridiagonal with Respect to an Eigenbasis of the other; Comments on the Parameter Array , 2005, Des. Codes Cryptogr..

[20]  P. Baseilhac,et al.  Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory , 2007, hep-th/0703106.

[21]  Paul M. Terwilliger,et al.  Matrix units associated with the split basis of a Leonard pair , 2006, math/0602416.

[22]  B. Davies Onsager’s algebra and the Dolan–Grady condition in the non‐self‐dual case , 1991 .

[23]  Melvin A. Vidar Tridiagonal pairs of shape (1, 2, 1) , 2008, 0802.3165.

[24]  Raimundas Vidunas,et al.  LEONARD PAIRS AND THE ASKEY-WILSON RELATIONS , 2003 .

[25]  An integrable structure related with tridiagonal algebras , 2004, math-ph/0408025.

[26]  Tatsuro Ito,et al.  The Drinfel'd polynomial of a tridiagonal pair , 2008, 0805.1465.

[27]  Paul M. Terwilliger The Subconstituent Algebra of an Association Scheme, (Part I) , 1992 .

[28]  A. Zhedanov,et al.  ‘Leonard pairs’ in classical mechanics , 2002 .

[29]  D. A. Leonard Orthogonal Polynomials, Duality and Association Schemes , 1982 .

[30]  Paul M. Terwilliger,et al.  Tridiagonal pairs and the quantum affine algebra $${\boldmath U_q({\widehat {sl}}_2)}$$ , 2007 .

[31]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[32]  A. Pressley,et al.  A guide to quantum groups , 1994 .

[33]  A. Zhedanov,et al.  Mutual integrability, quadratic algebras, and dynamical symmetry , 1992 .

[34]  Paul M. Terwilliger,et al.  The Subconstituent Algebra of an Association Scheme (Part III) , 1993 .

[35]  Paul Terwilliger Leonard pairs and the q-Racah polynomials , 2003 .

[36]  Paul M. Terwilliger,et al.  R A ] 1 8 A ug 2 00 9 Tridiagonal pairs and the μ-conjecture , 2009 .

[37]  Tatsuro Ito,et al.  The q-Tetrahedron Algebra and Its Finite Dimensional Irreducible Modules , 2006 .

[38]  Paul M. Terwilliger,et al.  Towards a classification of the tridiagonal pairs , 2008, 0801.0621.

[39]  Paul M. Terwilliger,et al.  The structure of a tridiagonal pair , 2008, 0802.1096.

[40]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[41]  A. Zhedanov “Hidden symmetry” of Askey-Wilson polynomials , 1991 .

[42]  P. Baseilhac,et al.  A deformed analogue of Onsager’s symmetry in the XXZ open spin chain , 2005, hep-th/0507053.

[43]  P. Baseilhac A family of tridiagonal pairs and related symmetric functions , 2006, math-ph/0604035.

[44]  Paul M. Terwilliger,et al.  An Algebraic Approach to the Askey Scheme of Orthogonal Polynomials , 2006 .

[46]  Tatsuro Ito,et al.  Some algebra related to P- and Q-polynomial association schemes , 1999, Codes and Association Schemes.

[47]  V. Drinfeld Hopf algebra and Yang-Baxter equation , 1985 .

[48]  Darren Funk-Neubauer Tridiagonal pairs and the q-tetrahedron algebra , 2008, 0806.0901.

[49]  Paul M. Terwilliger,et al.  Sharp tridiagonal pairs , 2007, 0712.3665.

[50]  Paul M. Terwilliger,et al.  Tridiagonal pairs and the quantum affine algebra Uq(sl2) (代数的組合せ論) , 2005 .

[51]  B. Curtin,et al.  A FAMILY OF TRIDIAGONAL PAIRS RELATED TO THE QUANTUM AFFINE ALGEBRA Uq( sl2) , 2005 .

[52]  Richard Askey,et al.  A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols. , 1979 .

[53]  W. Greub Linear Algebra , 1981 .

[55]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[56]  H. Koelink,et al.  $q$-Krawtchouk polynomials as spherical functions on the Hecke algebra of type $B$ , 1996 .

[57]  A. Pressley,et al.  Quantum affine algebras , 1991 .

[58]  B. Davies Onsager's algebra and superintegrability , 1990 .

[59]  The structure of quotients of the Onsager algebra by closed ideals *The structure of quotients of th , 1999, math/9911018.

[60]  Paul M. Terwilliger Two linear transformations each tridiagonal with respect to an eigenbasis of the other; an overview , 2001 .

[61]  Vladimir Drinfeld,et al.  Hopf algebras and the quantum Yang-Baxter equation , 1985 .

[62]  K. Mimachi,et al.  Askey-wilson polynomials as spherical functions on SUq(2) , 1992 .

[64]  K. Nomura Tridiagonal pairs and the Askey–Wilson relations , 2005 .