Pyramid Network with Online Hard Example Mining for Accurate Left Atrium Segmentation

Accurately segmenting left atrium in MR volume can benefit the ablation procedure of atrial fibrillation. Traditional automated solutions often fail in relieving experts from the labor-intensive manual labeling. In this paper, we propose a deep neural network based solution for automated left atrium segmentation in gadolinium-enhanced MR volumes with promising performance. We firstly argue that, for this volumetric segmentation task, networks in 2D fashion can present great superiorities in time efficiency and segmentation accuracy than networks with 3D fashion. Considering the highly varying shape of atrium and the branchy structure of associated pulmonary veins, we propose to adopt a pyramid module to collect semantic cues in feature maps from multiple scales for fine-grained segmentation. Also, to promote our network in classifying the hard examples, we propose an Online Hard Negative Example Mining strategy to identify voxels in slices with low classification certainties and penalize the wrong predictions on them. Finally, we devise a competitive training scheme to further boost the generalization ability of networks. Extensively verified on 20 testing volumes, our proposed framework achieves an average Dice of \(92.83\%\) in segmenting the left atria and pulmonary veins.

[1]  Xin Yang,et al.  Hybrid Loss Guided Convolutional Networks for Whole Heart Parsing , 2017, STACOM@MICCAI.

[2]  Daniel J. Perry,et al.  Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge , 2013, Journal of Cardiovascular Magnetic Resonance.

[3]  Guang Yang,et al.  Multiview Two-Task Recursive Attention Model for Left Atrium and Atrial Scars Segmentation , 2018, MICCAI.

[4]  Sébastien Ourselin,et al.  A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI , 2010, IEEE Transactions on Medical Imaging.

[5]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Xiangyu Zhang,et al.  Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Kawal S. Rhode,et al.  CardiacNET: Segmentation of Left Atrium and Proximal Pulmonary Veins from MRI Using Multi-view CNN , 2017, MICCAI.

[8]  Guang Yang,et al.  A fully automatic deep learning method for atrial scarring segmentation from late gadolinium-enhanced MRI images , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[9]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[11]  Abhinav Gupta,et al.  Training Region-Based Object Detectors with Online Hard Example Mining , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Ling Shao,et al.  A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging , 2016, Magnetic Resonance Materials in Physics, Biology and Medicine.

[13]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[14]  Jürgen Weese,et al.  Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets , 2015, IEEE Transactions on Medical Imaging.

[15]  Dorin Comaniciu,et al.  Multi-Part Modeling and Segmentation of Left Atrium in C-Arm CT for Image-Guided Ablation of Atrial Fibrillation , 2014, IEEE Transactions on Medical Imaging.

[16]  R. J. van der Geest,et al.  Fully automatic segmentation of left atrium and pulmonary veins in late gadolinium‐enhanced MRI: Towards objective atrial scar assessment , 2016, Journal of magnetic resonance imaging : JMRI.

[17]  Hao Chen,et al.  3D deeply supervised network for automated segmentation of volumetric medical images , 2017, Medical Image Anal..