The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator

This paper contains a solution with complete proofs of the main problems of the inverse scattering at fixed energy E for the Schrodinger two-dimensional operator with decreasing coefficients (uniqueness of the reconstruction, a reconstruction procedure, characterization of the scattering data). Most completed results are obtained under the condition of “smallness” of coefficients in comparison with the number E. This paper develops and generalizes several preceded papers.

[1]  S. Manakov,et al.  The inverse scattering transform for the time-dependent Schrodinger equation and Kadomtsev-Petviashvili equation , 1981 .

[2]  S. Manakov,et al.  Construction of higher-dimensional nonlinear integrable systems and of their solutions , 1985 .

[3]  R. Novikov,et al.  Analogs of multisoliton potentials for the two-dimensional Schrödinger operator , 1985 .

[4]  Mark J. Ablowitz,et al.  A Multidimensional Inverse-Scattering Method , 1984 .

[5]  Athanassios S. Fokas,et al.  On the Inverse Scattering Transform for the Kadomtsev-Petviashvili Equation , 1983 .

[6]  I. Vekua Generalized Analytic Functions , 1962 .

[7]  R G Novikov,et al.  The $ \bar\partial$-equation in the multidimensional inverse scattering problem , 1987 .

[8]  Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy , 1986 .

[9]  R. Novikov,et al.  A multidimensional inverse problem in quantum and acoustic scattering , 1988 .

[10]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[11]  J. Leon,et al.  On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane , 1987 .

[12]  B. Seckler,et al.  The Inverse Problem in the Quantum Theory of Scattering... , 1964 .

[13]  S. Manakov,et al.  Inverse scattering problem for the two-dimensional Schrödinger operator, the $$\bar \partial$$ -method and nonlinear equations , 1986 .

[14]  S. Novikov,et al.  Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state , 1988 .

[15]  John Sylvester,et al.  A uniqueness theorem for an inverse boundary value problem in electrical prospection , 1986 .

[16]  P. Sabatier,et al.  Inverse Problems in Quantum Scattering Theory , 1977 .

[17]  The Schrodinger operator in the plane , 1993 .