Human embryonic stem cells have a unique epigenetic signature data

Access the most recent version at doi: published online Aug 9, 2006; Genome Res. Jeanne F. Loring and Jian-Bing Fan Savant-Bhonsale, Alan K. Smith, Aravinda Chakravarti, Anirban Maitra, Mahendra Rao, David L. Barker, Thomas C. Schulz, Allan Robins, Aparna Khanna, Peter Sartipy, Johan Hyllner, Padmavathy Vanguri, Smita Todd W. Plaia, Jonathan M. Auerbach, Dan E. Arking, Rodolfo Gonzalez, Jeremy Crook, Bruce Davidson, Marina Bibikova, Eugene Chudin, Bonnie Wu, Lixin Zhou, Eliza Wickham Garcia, Ying Liu, Soojung Shin, Human embryonic stem cells have a unique epigenetic signature

[1]  A. Lindahl,et al.  Clonal derivation and characterization of human embryonic stem cell lines. , 2006, Journal of biotechnology.

[2]  Wei Jiang,et al.  High-throughput DNA methylation profiling using universal bead arrays. , 2006, Genome research.

[3]  J. Thomson,et al.  Derivation of human embryonic stem cells in defined conditions , 2006, Nature Biotechnology.

[4]  J. Loring,et al.  Establishing Standards for the Characterization of Human Embryonic Stem Cell Lines , 2006, Stem cells.

[5]  Rajarshi Pal,et al.  Characterization and in vitro differentiation potential of a new human embryonic stem cell line, ReliCellhES1. , 2006, Differentiation; research in biological diversity.

[6]  J. Lawrence,et al.  X‐Inactivation Status Varies in Human Embryonic Stem Cell Lines , 2005, Stem cells.

[7]  N. Brockdorff,et al.  Global hypomethylation of the genome in XX embryonic stem cells , 2005, Nature Genetics.

[8]  R. Jaenisch,et al.  Global loss of imprinting leads to widespread tumorigenesis in adult mice. , 2005, Cancer cell.

[9]  A. Chakravarti,et al.  Genomic alterations in cultured human embryonic stem cells , 2005, Nature Genetics.

[10]  K. Moley,et al.  Gametes and Embryo Epigenetic Reprogramming Affect Developmental Outcome: Implication for Assisted Reproductive Technologies , 2005, Pediatric Research.

[11]  Kevin Eggan,et al.  Nuclear Reprogramming of Somatic Cells After Fusion with Human Embryonic Stem Cells , 2005, Science.

[12]  W. Lam,et al.  Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells , 2005, Nature Genetics.

[13]  Janet Rossant,et al.  The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research , 2005, Nature Biotechnology.

[14]  Guy Perrière,et al.  MADE4: an R package for multivariate analysis of gene expression data , 2005, Bioinform..

[15]  Igor Jurisica,et al.  CpG Island microarray probe sequences derived from a physical library are representative of CpG Islands annotated on the human genome , 2005, Nucleic acids research.

[16]  G. Keller,et al.  Embryonic stem cell differentiation: emergence of a new era in biology and medicine. , 2005, Genes & development.

[17]  W. Reik,et al.  Epigenetic reprogramming in mammals. , 2005, Human molecular genetics.

[18]  Stephan Beck,et al.  From genome to epigenome. , 2005, Human molecular genetics.

[19]  Ariel J. Levine,et al.  TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells , 2005 .

[20]  J. Thomson,et al.  Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells , 2005, Nature Methods.

[21]  C. Allegrucci,et al.  Epigenetics and the germline. , 2005, Reproduction.

[22]  W. Freed,et al.  Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. , 2004, Stem cells and development.

[23]  Antony V. Cox,et al.  Open access, freely available online PLoS BIOLOGY DNA Methylation Profiling of the Human Major Histocompatibility Complex: A Pilot Study , 2022 .

[24]  A. Razin,et al.  Establishing the epigenetic status of the Prader-Willi/Angelman imprinting center in the gametes and embryo. , 2004, Human molecular genetics.

[25]  C. Denning,et al.  Stem-cell consequences of embryo epigenetic defects , 2004, The Lancet.

[26]  J. Meneses,et al.  Propagation and maintenance of undifferentiated human embryonic stem cells. , 2004, Stem cells and development.

[27]  A. Lindahl,et al.  Derivation, Characterization, and Differentiation of Human Embryonic Stem Cells , 2004, Stem cells.

[28]  A. Clark,et al.  Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. , 2004, Human molecular genetics.

[29]  Chad A. Cowan,et al.  Derivation of embryonic stem-cell lines from human blastocysts. , 2004, The New England journal of medicine.

[30]  W. Freed,et al.  BG01V: a variant human embryonic stem cell line which exhibits rapid growth after passaging and reliable dopaminergic differentiation. , 2004, Restorative neurology and neuroscience.

[31]  J. Herman,et al.  Gene silencing in cancer in association with promoter hypermethylation. , 2003, The New England journal of medicine.

[32]  Vitaly L. Galinsky,et al.  Automatic registration of microarray images. II. Hexagonal grid , 2003, Bioinform..

[33]  Vitaly L. Galinsky,et al.  Automatic registration of microarray images. I. Rectangular grid , 2003, Bioinform..

[34]  Richard Shen,et al.  Self-assembled random arrays: high-performance imaging and genomics applications on a high-density microarray platform , 2003, SPIE BiOS.

[35]  M. Lee Genome‐Wide Analysis of Epigenetics in Cancer , 2003, Annals of the New York Academy of Sciences.

[36]  D Bentley,et al.  Highly parallel SNP genotyping. , 2003, Cold Spring Harbor symposia on quantitative biology.

[37]  Guy Perrière,et al.  Between-group analysis of microarray data , 2002, Bioinform..

[38]  M. Esteller CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future , 2002, Oncogene.

[39]  J. Itskovitz‐Eldor,et al.  Derivation and spontaneous differentiation of human embryonic stem cells * , 2002, Journal of anatomy.

[40]  A. Trounson,et al.  Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro , 2000, Nature Biotechnology.

[41]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[42]  N C Dracopoli,et al.  Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. , 1984, Laboratory investigation; a journal of technical methods and pathology.