Comparing capture–recapture, mark–resight, and spatial mark–resight models for estimating puma densities via camera traps

Abstract Camera-trapping surveys, in combination with traditional capture–recapture or spatially explicit capture–recapture techniques, have become popular for estimating the density of individually identifiable carnivores. When only a portion of the population is uniquely identifiable, traditional and spatial mark–resight models provide a viable alternative. We reanalyzed a data set that used photographic capture–recapture methods to estimate the densities of pumas (Puma concolor) across 3 study sites in Belize, Argentina, and Bolivia using newer, more-advanced modeling including spatial and nonspatial mark–resight techniques. Additionally, we assessed how photo identification influenced density estimates by comparing estimates based on capture histories constructed by 3 independent investigators. We estimated the abundances of pumas using mark–resight models in program MARK and then estimated densities ad hoc. We also estimated densities directly using spatial mark–resight models implemented in a Bayesian framework. Puma densities did not vary substantially among observers but estimates generated from the 3 statistical techniques did differ. Density estimates (pumas/100 km2) from spatial mark–resight models were lower (0.22–7.92) and had increased precision compared to those from nonspatial capture–recapture (0.50–19.35) and mark–resight techniques (0.54–14.70). Our study is the 1st to estimate the density of a population of carnivores, where only a subset of the individuals are naturally marked, using camera-trapping surveys in combination with spatial mark–resight models. The development of spatial mark–resight and spatially explicit capture–recapture techniques creates the potential for using a single camera-trapping array to estimate the density of multiple, sympatric carnivores, including both partially marked and uniquely marked species. Resumen Los relevamientos con trampas-cámara en combinación con modelos tradicionales o espacialmente explícitos de captura–recaptura, se han convertido en metodologías muy utilizadas para estimar la densidad de carnívoros que pueden ser identificados individualmente. Cuando sólo una porción de la población puede ser identificada inequívocamente, los modelos de marcado–revisualización tradicionales y espacialmente explícitos proveen una alternativa viable. Reanalizamos un conjunto de datos, que se utilizó para estimar la densidad de pumas (Puma concolor) mediante el método fotográfico de captura–recaptura en 3 sitios de estudio en Belice, Argentina y Bolivia, utilizando modelos más novedosos y avanzados incluyendo técnicas de marcado–revisualización tradicionales y espacialmente explicitas. Adicionalmente, evaluamos cómo la identificación de fotografías influyó en las estimaciones de densidad, comparando estimaciones basadas en las historias de captura construidas por 3 investigadores independientes. Estimamos la abundancia de pumas usando modelos de marcado–revisualización en el programa MARK y luego estimamos las densidades ad hoc. También estimamos densidades usando modelos espaciales de marcado–revisualización espacialmente explícitos implementados en un marco Bayesiano. La densidad de pumas no varió sustancialmente entre observadores, pero las estimaciones generadas mediante los 3 modelos estadísticos fueron diferentes. Las densidades de pumas (pumas/100 km2) de modelos de marcado–revisualización espacialmente explícitos fueron más bajas (0.22–7.92) y aumentaron en precisión comparadas con aquellas de captura–recaptura (0.50–19.35) y técnicas de marcado–revisualización no espacialmente explícitos (0.54–14.70). Nuestro estudio es el primero en estimar la densidad mediante la utilización de datos de trampas-cámara en combinación con modelos marcado–revisualización espacialmente explícitos de una población de carnívoros donde sólo un subconjunto de individuos está marcado naturalmente. El desarrollo de técnicas de marcado–revisualización y captura–recaptura espacialmente explícitos ofrece la oportunidad de utilizar un mismo diseño de trampas-cámara para estimar la densidad de múltiples carnívoros simpátricos, incluyendo especies parcial o totalmente identificables individualmente.

[1]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[2]  Gary C. White,et al.  Population Estimation with Radio-Marked Animals , 2001 .

[3]  Andrew J. Noss,et al.  The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis , 2004, Oryx.

[4]  J. Andrew Royle,et al.  Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models , 2010, Journal of Ornithology.

[5]  J. Nichols,et al.  ESTIMATION OF TIGER DENSITIES IN INDIA USING PHOTOGRAPHIC CAPTURES AND RECAPTURES , 1998 .

[6]  J. Andrew Royle,et al.  Using multiple data sources provides density estimates for endangered Florida panther , 2013 .

[7]  Brett T McClintock,et al.  A spatial mark--resight model augmented with telemetry data. , 2013, Ecology.

[8]  David R. Anderson,et al.  Evaluation of Two Density Estimators of Small Mammal Population Size , 1985 .

[9]  D L Borchers,et al.  Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies , 2008, Biometrics.

[10]  Andrew J. Noss,et al.  One thousand jaguars ( Panthera onca ) in Bolivia's Chaco? Camera trapping in the Kaa-Iya National Park , 2004 .

[11]  J. Andrew Royle,et al.  Fully Spatial Capture-Recapture Models , 2014 .

[12]  R. Azari,et al.  Scale, Variable Density, and Conservation Planning for Mammalian Carnivores , 1991 .

[13]  M. Kelly,et al.  Estimating Puma Densities from Camera Trapping across Three Study Sites: Bolivia, Argentina, and Belize , 2008 .

[14]  James D. Nichols,et al.  Statistical concepts: Estimating absolute densities of tigers using capture-recapture sampling , 2002 .

[15]  David R. Anderson,et al.  Statistical inference from capture data on closed animal populations , 1980 .

[16]  C. S. Robbins,et al.  DENSITY: software for analysing capture-recapture data from passive detector arrays , 2004, Animal Biodiversity and Conservation.

[17]  Margaret F. Kinnaird,et al.  Density estimation of sympatric carnivores using spatially explicit capture–recapture methods and standard trapping grid , 2011 .

[18]  Kae Kawanishi,et al.  Conservation status of tigers in a primary rainforest of Peninsular Malaysia , 2004 .

[19]  Allan F. O'Connell,et al.  Comparison of density estimation methods for mammal populations with camera traps in the Kaa‐Iya del Gran Chaco landscape , 2012 .

[20]  David R. Anderson,et al.  Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators , 2003 .

[21]  D. Beyer,et al.  MONITORING AND HABITAT ANALYSIS FOR WOLVES IN UPPER MICHIGAN , 2005 .

[22]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[23]  M. Sunquist,et al.  Wild Cats of the World , 2002 .

[24]  J. Andrew Royle,et al.  Spatially explicit models for inference about density in unmarked or partially marked populations , 2011, 1112.3250.

[25]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[26]  J. Andrew Royle,et al.  Spatial Capture-Recapture , 2013 .

[27]  A. F. O'connell,et al.  Estimating Site Occupancy and Detection Probability Parameters for Meso- And Large Mammals in a Coastal Ecosystem , 2006 .

[28]  T. Caro,et al.  Estimating Carnivore Densities for Conservation Purposes: Indirect Methods Compared to Baseline Demographic Data , 1996 .

[29]  Brett T McClintock,et al.  Estimating Abundance Using Mark–Resight When Sampling Is with Replacement or the Number of Marked Individuals Is Unknown , 2009, Biometrics.

[30]  J. Andrew Royle,et al.  A hierarchical model for estimating density in camera‐trap studies , 2009 .

[31]  Jerrold L. Belant,et al.  How Does Spatial Study Design Influence Density Estimates from Spatial Capture-Recapture Models? , 2012, PloS one.

[32]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[33]  Brian D. Gerber,et al.  Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet , 2011, Population Ecology.

[34]  J Andrew Royle,et al.  Density estimation in tiger populations: combining information for strong inference. , 2012, Ecology.

[35]  Eric Marboutin,et al.  Abundance of rare and elusive species: Empirical investigation of closed versus spatially explicit capture–recapture models with lynx as a case study† , 2013 .

[36]  A. N. Arnason,et al.  Estimating closed population size and number of marked animals from sighting data , 1991 .