Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization

Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE–PDL–PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85–98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (fhard = 0.4) and variable molar masses 40–100 kg mol−1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol−1) and variable hard-block volume fractions (0.12 < fhard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (fhard < 0.4 and N > 1300) with linear stress–strain relationships, high ultimate tensile strengths (σb = 1–5 MPa), very high elongations at break (εb = 1000–1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (Td,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.

[1]  Charlotte K. Williams,et al.  Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics , 2020, Journal of the American Chemical Society.

[2]  G. Coates,et al.  Mechanism-Inspired Design of Bifunctional Catalysts for the Alternating Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides. , 2019, Journal of the American Chemical Society.

[3]  J. Mays,et al.  Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry , 2019, Progress in Polymer Science.

[4]  M. Hillmyer,et al.  Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups. , 2019, Biomacromolecules.

[5]  Charlotte K. Williams,et al.  Easy access to oxygenated block polymers via switchable catalysis , 2019, Nature Communications.

[6]  L. Billon,et al.  Renewable Terpene Derivative as a Biosourced Elastomeric Building Block in the Design of Functional Acrylic Copolymers. , 2019, Biomacromolecules.

[7]  M. Xiao,et al.  Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis , 2019, Green Chemistry.

[8]  Megan L. Robertson,et al.  Sustainable thermoplastic elastomers with a transient network , 2019, European Polymer Journal.

[9]  Charlotte K. Williams,et al.  Heterodinuclear zinc and magnesium catalysts for epoxide/CO2 ring opening copolymerizations , 2019, Chemical science.

[10]  F. Jiang,et al.  Reprocessable Supramolecular Thermoplastic BAB-Type Triblock Copolymer Elastomers with Enhanced Tensile Strength and Toughness via Metal–Ligand Coordination , 2019, ACS Applied Polymer Materials.

[11]  Beth Cholst,et al.  Stretchable Optical Fibers: Stretchable Thermoplastic Elastomer Optical Fibers for Sensing of Extreme Deformations (Adv. Funct. Mater. 5/2019) , 2019, Advanced Functional Materials.

[12]  Kevin A. Cavicchi,et al.  Shape Memory Properties of Polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene (SEBS) ABA Triblock Copolymer Thermoplastic Elastomers , 2019, ACS Applied Polymer Materials.

[13]  Wei-Min Ren,et al.  Development of Highly Enantioselective Catalysts for Asymmetric Copolymerization of meso-Epoxides and Cyclic Anhydrides: Subtle Modification Resulting in Superior Enantioselectivity , 2019, ACS Catalysis.

[14]  Bin Wang,et al.  One-Step Access to Sequence-Controlled Block Copolymers by Self-Switchable Organocatalytic Multicomponent Polymerization. , 2018, Angewandte Chemie.

[15]  Beth Cholst,et al.  Stretchable Thermoplastic Elastomer Optical Fibers for Sensing of Extreme Deformations , 2018, Advanced Functional Materials.

[16]  Charlotte K. Williams,et al.  Switch Catalysis To Deliver Multi‐Block Polyesters from Mixtures of Propene Oxide, Lactide, and Phthalic Anhydride , 2018, Angewandte Chemie.

[17]  K. Landfester,et al.  Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. , 2018, Angewandte Chemie.

[18]  Jian Sun,et al.  Self-Assembly of an Ultrahigh-χ Block Copolymer with Versatile Etch Selectivity , 2018, Macromolecules.

[19]  M. Grunlan,et al.  Hydrolytic Degradation and Erosion of Polyester Biomaterials. , 2018, ACS macro letters.

[20]  J. Jia,et al.  Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters , 2018, Nature Communications.

[21]  Charlotte K. Williams,et al.  Pentablock Copolymer from Tetracomponent Monomer Mixture Using a Switchable Dizinc Catalyst , 2018, Macromolecules.

[22]  Charlotte K. Williams,et al.  Selective Polymerization Catalysis from Monomer Mixtures: Using a Commercial Cr‐Salen Catalyst To Access ABA Block Polyesters , 2018, Angewandte Chemie.

[23]  Deborah K. Schneiderman,et al.  Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects , 2018 .

[24]  Guangzhao Zhang,et al.  Well-Defined and Structurally Diverse Aromatic Alternating Polyesters Synthesized by Simple Phosphazene Catalysis , 2018 .

[25]  M. Hillmyer,et al.  Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability. , 2018, Journal of the American Chemical Society.

[26]  C. K. Williams,et al.  ‘Switch’ catalysis: from monomer mixtures to sequence-controlled block copolymers , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  William R. Dichtel,et al.  Reprocessable Acid-Degradable Polycarbonate Vitrimers , 2018 .

[28]  Mareva Fevre,et al.  Catalysis as an Enabling Science for Sustainable Polymers. , 2017, Chemical reviews.

[29]  J. Mays,et al.  Block Copolymers: Synthesis, Self-Assembly, and Applications , 2017, Polymers.

[30]  Miao Hong,et al.  Chemically recyclable polymers: a circular economy approach to sustainability , 2017 .

[31]  Chuanbing Tang,et al.  Sustainable Elastomers from Renewable Biomass. , 2017, Accounts of chemical research.

[32]  Jeannette M. García,et al.  Chemical recycling of waste plastics for new materials production , 2017 .

[33]  B. Rieger,et al.  CO2-Controlled One-Pot Synthesis of AB, ABA Block, and Statistical Terpolymers from β-Butyrolactone, Epoxides, and CO2. , 2017, Journal of the American Chemical Society.

[34]  Andrew J. P. White,et al.  Di‐Zinc–Aryl Complexes: CO2 Insertions and Applications in Polymerisation Catalysis , 2017, Chemistry.

[35]  Naruki Kurokawa,et al.  Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers. , 2017, Biomacromolecules.

[36]  Deborah K. Schneiderman,et al.  50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers , 2017 .

[37]  Jihoon Shin,et al.  Sustainable poly(ε-decalactone)−poly(l-lactide) multiarm star copolymer architectures for thermoplastic elastomers with fixed molar mass and block ratio , 2017 .

[38]  Charlotte K. Williams,et al.  Sustainable polymers from renewable resources , 2016, Nature.

[39]  G. Coates,et al.  Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships. , 2016, Chemical reviews.

[40]  Deborah K. Schneiderman,et al.  Renewable, Degradable, and Chemically Recyclable Cross-Linked Elastomers , 2016 .

[41]  T. Reineke,et al.  Sustainable glucose-based block copolymers exhibit elastomeric and adhesive behavior , 2016 .

[42]  Charlotte K. Williams,et al.  Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide. , 2016, Journal of the American Chemical Society.

[43]  Charlotte K. Williams,et al.  Techno-economic assessment of the production of phthalic anhydride from corn stover , 2016 .

[44]  G. Coates,et al.  Electronic Effects of Aluminum Complexes in the Copolymerization of Propylene Oxide with Tricyclic Anhydrides: Access to Well-Defined, Functionalizable Aliphatic Polyesters. , 2016, Journal of the American Chemical Society.

[45]  Andreas Greiner,et al.  Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency , 2016 .

[46]  Liang Yuan,et al.  Bioinspired High Resilient Elastomers to Mimic Resilin. , 2016, ACS macro letters.

[47]  D. Darensbourg,et al.  Mechanistic Insights into Water-Mediated Tandem Catalysis of Metal-Coordination CO2/Epoxide Copolymerization and Organocatalytic Ring-Opening Polymerization: One-Pot, Two Steps, and Three Catalysis Cycles for Triblock Copolymers Synthesis , 2016 .

[48]  J. P. Macdonald,et al.  An aromatic/aliphatic polyester prepared via ring-opening polymerisation and its remarkably selective and cyclable depolymerisation to monomer , 2016 .

[49]  Charlotte K. Williams,et al.  Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters. , 2015, Journal of the American Chemical Society.

[50]  Marc A. Hillmyer,et al.  High χ-Low N Block Polymers: How Far Can We Go? , 2015, ACS macro letters.

[51]  Binyuan Liu,et al.  Novel chromium complexes with a [OSSO]-type bis(phenolato) dianionic ligand mediate the alternating ring-opening copolymerization of epoxides and phthalic anhydride , 2015 .

[52]  Charlotte K. Williams,et al.  Sequence Selective Polymerization Catalysis: A New Route to ABA Block Copoly(ester-b-carbonate-b-ester) , 2015 .

[53]  Jihoon Shin,et al.  Preparation and Characterization of a Renewable Pressure-Sensitive Adhesive System Derived from ε-Decalactone, l-Lactide, Epoxidized Soybean Oil, and Rosin Ester , 2015 .

[54]  Megan L. Robertson,et al.  Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils. , 2015, ACS applied materials & interfaces.

[55]  E. M. Hill,et al.  Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) copolymer elastomers , 2015 .

[56]  Charlotte K. Williams,et al.  Influences of a Dizinc Catalyst and Bifunctional Chain Transfer Agents on the Polymer Architecture in the Ring-Opening Polymerization of ε-Caprolactone , 2015 .

[57]  Charlotte K. Williams,et al.  Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. , 2015, Chemical communications.

[58]  Chun-peng Wang,et al.  UV-absorbent lignin-based multi-arm star thermoplastic elastomers. , 2015, Macromolecular rapid communications.

[59]  A. Buchard,et al.  Preparation of stereoregular isotactic poly(mandelic acid) through organocatalytic ring-opening polymerization of a cyclic O-carboxyanhydride. , 2014, Angewandte Chemie.

[60]  Deborah K. Schneiderman,et al.  Synthesis and Melt Processing of Sustainable Poly(ε-decalactone)-block-Poly(lactide) Multiblock Thermoplastic Elastomers , 2014 .

[61]  Charlotte K. Williams,et al.  Di-magnesium and zinc catalysts for the copolymerization of phthalic anhydride and cyclohexene oxide , 2014 .

[62]  Angela L Holmberg,et al.  Biobased building blocks for the rational design of renewable block polymers. , 2014, Soft matter.

[63]  T. Hoye,et al.  Sustainable Thermoplastic Elastomers from Terpene-Derived Monomers. , 2014, ACS macro letters.

[64]  M. Hillmyer,et al.  Aliphatic polyester block polymers: renewable, degradable, and sustainable. , 2014, Accounts of chemical research.

[65]  Charlotte K. Williams,et al.  Chemoselective Polymerization Control: From Mixed-Monomer Feedstock to Copolymers , 2014, Angewandte Chemie.

[66]  Enrique D. Gomez,et al.  Sustainable Thermoplastic Elastomers Derived from Fatty Acids , 2013 .

[67]  A. Albertsson,et al.  ε-Decalactone: a thermoresilient and toughening comonomer to poly(L-lactide). , 2013, Biomacromolecules.

[68]  R. Duchateau,et al.  Catalytic Ring-Opening Copolymerization of Limonene Oxide and Phthalic Anhydride: Toward Partially Renewable Polyesters , 2013 .

[69]  Frederick R. Eirich,et al.  Science and Technology of Rubber , 2012 .

[70]  Charlotte K. Williams,et al.  Efficient magnesium catalysts for the copolymerization of epoxides and CO2; using water to synthesize polycarbonate polyols. , 2012, Journal of the American Chemical Society.

[71]  C. M. Bates,et al.  Multiblock Polymers: Panacea or Pandora’s Box? , 2012, Science.

[72]  Charlotte K. Williams,et al.  Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate) , 2012 .

[73]  R. Duchateau,et al.  Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides , 2012 .

[74]  D. Darensbourg,et al.  Kinetic Studies of the Alternating Copolymerization of Cyclic Acid Anhydrides and Epoxides, and the Terpolymerization of Cyclic Acid Anhydrides, Epoxides, and CO2 Catalyzed by (salen)CrIIICl , 2012 .

[75]  Andrew L. Schmitt,et al.  Unexpected consequences of block polydispersity on the self-assembly of ABA triblock copolymers. , 2012, Journal of the American Chemical Society.

[76]  M. Matsen Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts , 2012 .

[77]  M. Hillmyer,et al.  Polylactide–Poly(6-methyl-ε-caprolactone)–Polylactide Thermoplastic Elastomers , 2011 .

[78]  Charlotte K. Williams,et al.  Mechanistic investigation and reaction kinetics of the low-pressure copolymerization of cyclohexene oxide and carbon dioxide catalyzed by a dizinc complex. , 2011, Journal of the American Chemical Society.

[79]  G. Coates,et al.  Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters. , 2011, Journal of the American Chemical Society.

[80]  Namita Roy Thermal Analysis of Rubbers and Rubbery Materials, P.P. De, N. Roy Choudhury, N.K. Dutta (Eds.). iSmithers, Shawbury, Shropshire, SY4 4NR, Uk (2010), 543, hardback 978-1-84735-102-9 softback 978-1-84735-104-2 ebook, ISBN: 978-1-84735-103-6 , 2010 .

[81]  M. Hillmyer,et al.  Hydrolytic degradation behavior of a renewable thermoplastic elastomer. , 2009, Biomacromolecules.

[82]  M. Hillmyer,et al.  A bifunctional monomer derived from lactide for toughening polylactide. , 2008, Journal of the American Chemical Society.

[83]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[84]  Charlotte K. Williams Synthesis of functionalized biodegradable polyesters. , 2007, Chemical Society reviews.

[85]  Tianqi Liu,et al.  Synthesis of Polymandelide: A Degradable Polylactide Derivative with Polystyrene-like Properties , 2007 .

[86]  Suping Lyu,et al.  Kinetics and time-temperature equivalence of polymer degradation. , 2007, Biomacromolecules.

[87]  Andre Lee,et al.  Morphology and Phase Transitions in Styrene−Butadiene−Styrene Triblock Copolymer Grafted with Isobutyl-Substituted Polyhedral Oligomeric Silsesquioxanes , 2007 .

[88]  J. Mcgrath,et al.  Structure‐property relationships for styrene‐diene thermoplastic elastomers , 2007 .

[89]  Ian W. Hamley,et al.  Small-angle scattering of block copolymers: in the melt, solution and crystal states , 2004 .

[90]  V. Altstädt,et al.  The effect of hard and soft segment composition and molecular architecture on the morphology and mechanical properties of polystyrene–polyisobutylene thermoplastic elastomeric block copolymers , 2003 .

[91]  M. Hillmyer,et al.  Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers. , 2003, Biomacromolecules.

[92]  A. Bhowmick,et al.  Influence of block molecular weight on the properties of styrene-ethylenebutylene-styrene block copolymers , 2000 .

[93]  Shiro Kobayashi,et al.  Lipase-catalyzed degradation of polyesters in organic solvents. A new methodology of polymer recycling using enzyme as catalyst. , 2000, Biomacromolecules.

[94]  R. Jerome,et al.  Dependence of the Ultimate Tensile Strength of Thermoplastic Elastomers of the Triblock Type on the Molecular Weight between Chain Entanglements of the Central Block , 2000 .

[95]  Nikos Hadjichristidis,et al.  Mechanical Properties and Deformation Behavior of the Double Gyroid Phase in Unoriented Thermoplastic Elastomers , 1999 .

[96]  Matthew Libera,et al.  Morphological Development in Solvent-Cast Polystyrene−Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films , 1998 .

[97]  E. Thomas,et al.  Impact of Morphological Orientation in Determining Mechanical Properties in Triblock Copolymer Systems , 1996 .

[98]  C. G. Pitt,et al.  Modification of the rates of chain cleavage of poly(ϵ-caprolactone) and related polyesters in the solid state , 1987 .

[99]  L. Fetters,et al.  Synthesis and Properties of Block Copolymers. 4. Poly(p-tert-butylstyrene-diene-p-tert-butylstyrene) and Poly(p-tert-butylstyrene-isoprene-styrene) , 1977 .

[100]  L. Fetters,et al.  Synthesis and Properties of Block Polymers. I. Poly-α-methylstyrene-Polyisoprene-Poly-α-methylstyrene , 1969 .

[101]  H. Sardón,et al.  Organocatalysis for depolymerisation , 2019, Polymer Chemistry.

[102]  J. Mays,et al.  Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers , 2018 .

[103]  Charlotte K. Williams,et al.  Renewable polycarbonates and polyesters from 1,4-cyclohexadiene , 2015 .

[104]  R. Lobo,et al.  Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride , 2014 .

[105]  J. E. Mark,et al.  Chapter 4 – The Molecular Basis of Rubberlike Elasticity , 2013 .

[106]  Dominick V. Rosato,et al.  3 – DESIGN PARAMETER , 2003 .

[107]  Donald V. Rosato,et al.  Plastics Engineered Product Design , 2003 .

[108]  C. Han,et al.  Phase equilibria in mixtures of block copolymer and homopolymer , 1992 .

[109]  R. Lobo,et al.  List of reagents for analytical purposes with notes indicating the standards of purity regarded as necessary for analytical work , 1915 .