An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses

The information-spectrum analysis made by Han for classical hypothesis testing for simple hypotheses is extended to a unifying framework including both classical and quantum hypothesis testing. The results are also applied to fixed-length source coding when loosening the normalizing condition for probability distributions and for quantum states. We establish general formulas for several quantities relating to the asymptotic optimality of tests/codes in terms of classical and quantum information spectra

[1]  M. Nussbaum,et al.  A lower bound of Chernoff type for symmetric quantum hypothesis testing , 2006 .

[2]  Masahito Hayashi,et al.  Second-Order Asymptotics in Fixed-Length Source Coding and Intrinsic Randomness , 2005, IEEE Transactions on Information Theory.

[3]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[4]  M. Hayashi Exponents of quantum fixed-length pure-state source coding , 2002, quant-ph/0202002.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  林 正人 Quantum information : an introduction , 2006 .

[7]  M. Hayashi Asymptotics of quantum relative entropy from a representation theoretical viewpoint , 1997, quant-ph/9704040.

[8]  Po-Ning Chen General formulas for the Neyman-Pearson type-II error exponent subject to fixed and exponential type-I error bounds , 1996, IEEE Trans. Inf. Theory.

[9]  Te Sun Han The reliability functions of the general source with fixed-length coding , 2000, IEEE Trans. Inf. Theory.

[10]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[11]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[12]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[13]  Kenji Nakagawa,et al.  On the converse theorem in statistical hypothesis testing , 1993, IEEE Trans. Inf. Theory.

[14]  M. Hayashi Optimal sequence of POVMs in the sense of Stein's lemma in quantum hypothesis testing , 2001, quant-ph/0107004.

[15]  Te Sun Han Hypothesis testing with the general source , 2000, IEEE Trans. Inf. Theory.

[16]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[17]  Te Sun Han An information-spectrum approach to source coding theorems with a fidelity criterion , 1997, IEEE Trans. Inf. Theory.

[18]  Kiminori Iriyama,et al.  Probability of error for the fixed-length source coding of general sources , 2001, IEEE Trans. Inf. Theory.

[19]  W. Hoeffding Asymptotically Optimal Tests for Multinomial Distributions , 1965 .

[20]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[21]  N. S. Barnett,et al.  Private communication , 1969 .

[22]  Te Sun Han,et al.  The strong converse theorem for hypothesis testing , 1989, IEEE Trans. Inf. Theory.

[23]  Tomohiro Ogawa,et al.  A New Proof of the Direct Part of Stein's Lemma in Quantum Hypothesis Testing , 2001 .

[24]  J. Deuschel,et al.  A Quantum Version of Sanov's Theorem , 2004, quant-ph/0412157.

[25]  Masahito Hayashi General formulas for fixed-length quantum entanglement concentration , 2006, IEEE Transactions on Information Theory.

[26]  H. Nagaoka,et al.  Strong converse theorems in the quantum information theory , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[27]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[28]  Sergio Verdú,et al.  Simulation of random processes and rate-distortion theory , 1996, IEEE Trans. Inf. Theory.

[29]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[30]  Sergio Verdú,et al.  Channel simulation and coding with side information , 1994, IEEE Trans. Inf. Theory.

[31]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[32]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[33]  Masahito Hayashi,et al.  On error exponents in quantum hypothesis testing , 2004, IEEE Transactions on Information Theory.

[34]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[35]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[36]  Shunsuke Ihara,et al.  The Error Exponent and Minimum Achievable Rates for the Fixed-Length Coding of General Sources , 2001 .

[37]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[38]  H. Nagaoka The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.

[39]  A. Dembo,et al.  Large Deviation Techniques and Applications. , 1994 .

[40]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.